ess.sans.conversions.sans_elastic#
- ess.sans.conversions.sans_elastic(correct_for_gravity)[source]#
Generate a coordinate transformation graph for SANS elastic scattering.
It is based on classical conversions from
tof
and pixelposition
to \(\lambda\) (wavelength
), \(\theta\) (theta
) and \(Q\) (Q
), but can take into account the Earth’s gravitational field, which bends the flight path of the neutrons, to compute the scattering angle \(\theta\).The angle can be found using the following expression (Seeger & Hjelm 1991):
\[\theta = \frac{1}{2}\sin^{-1}\left(\frac{\sqrt{ x^{2} + \left( y + \frac{g m_{\rm n}}{2 h^{2}} \lambda^{2} L_{2}^{2} \right)^{2} } }{L_{2}}\right)\]where \(x\) and \(y\) are the spatial coordinates of the pixels in the horizontal and vertical directions, respectively, \(m_{\rm n}\) is the neutron mass, \(L_{2}\) is the distance between the sample and a detector pixel, \(g\) is the acceleration due to gravity, and \(h\) is Planck’s constant.
By default, the effects of gravity on the neutron flight paths are not included (equivalent to \(g = 0\) in the expression above).
- Parameters:
correct_for_gravity (
types.CorrectForGravity
(bool
)) – Take into account the bending of the neutron flight paths from the Earth’s gravitational field ifTrue
.- Return type:
conversions.ElasticCoordTransformGraph
(dict
)