From Mantid to Scipp#

Data types#

Workspaces#

Mantid workspaces are converted into Scipp data groups. Those data groups contain a number of entries converted from properties of the workspace and one entry called 'data' which holds the histogram or event data. The type of the latter depends on the type of workspace according to the following table.

Mantid

Scipp

Workspace2D

DataArray

EventWorkspace

DataArray

WorkspaceSingleValue

DataArray

MDHistoWorkspace

DataArray

MDEventWorkspace

DataArray

TableWorkspace

Dataset

WorkspaceGroup

Dataset (aligned dimensions), otherwise Python list or dict

Notes#

  • In many cases it may be desirable to use Dataset instead of DataArray. You can easily create a Dataset directly from a DataArray.

  • Scipp takes basic geometric information from Mantid’s instrument in the form of positions. Detector grouping by spectrum is respected. Upon conversion, Scipp will perform spherical coordinate averaging for the group based on the beam direction, this preserves the average scattering angle between a group of detectors and the spectra representing the group. This may yield slightly different detector and spectrum positions between what is natively stored in Mantid’s instrument and Scipp.

  • Run and Sample are copied over to scipp from any MatrixWorkspace derived Workspaces.

  • Scipp (or rather conversion to scipp) is currently still incomplete and does not carry over all information from a workspace.

Other#

Mantid

Scipp

DetectorInfo

Dataset

Concepts#

Mantid’s MatrixWorkspace (the common base class of Workspace2D and EventWorkspace) uses the terms “X”, “Y”, and “E” to refer to one of its axes, the data values, and the uncertainties.

  • Mantid stores standard-deviations in “E”, whereas scipp stores variances.

  • Typically Mantid’s “X” is the coordinate axis for the time-of-flight dimension, or the dimension derived from it.

  • Mantid’s “Y” is not the axis for the second dimension, but the data.

  • Mantid’s “X”, “Y”, and “E” are 1-D arrays of 1-D arrays, whereas scipp stores 2-D (or higher) arrays, if applicable.

We have the following “equivalence”:

Mantid

Scipp

comment

ws.readY(i)

data.values

ws.readE(i)

data.variances

square former, or sqrt latter

ws.readX(i)

data.coords['tof'].values

dimension label may vary

ws.getAxis(0).getUnit()

data.coords['tof'].unit

dimension label may vary

ws.getAxis(1)

data.coords['spectrum']

dimension label may vary

Here i is the index along the second axis (axis index 1). Mantid’s readX, readY, and readE always return 1-D arrays, whereas the values and variances properties in scipp return a multi-dimensional array. That is, there is no actual equivalence.

Algorithms#

Notes#

  • In Mantid a Python variable referencing a workspace is under the hood a global variable. Unless specified otherwise the variable name is the name of the workspace in the AnalysisDataService. For marginally more clarity, the examples in the following therefore use the string-based syntax for specifying output workspaces. In scipp there is no such limitation and everything behaves just like normal variables in Python.

  • Unless stated otherwise, the following code examples assume datasets or data arrays have 'tof' for what Mantid calls “X” and 'spectrum' why Mantid calls “Y” or “spectrum axis”.

  • There is no strict 1:1 equivalence between Mantid workspaces and functionality in scipp. The examples below give the most common examples, but in many cases exceptions apply and detailed behavior may differ. If in doubt, consult the Mantid algorithm documentation and the scipp documentation.

[1]:
import mantid.simpleapi as mantid
import scipp as sc
import scippneutron as scn
FrameworkManager-[Notice] Welcome to Mantid 6.10.0
FrameworkManager-[Notice] Please cite: http://dx.doi.org/10.1016/j.nima.2014.07.029 and this release: http://dx.doi.org/10.5286/Software/Mantid6.10
CheckMantidVersion-[Notice] A new version of Mantid(6.11.0) is available for download from https://download.mantidproject.org
DownloadInstrument-[Notice] All instrument definitions up to date

Test Data#

[2]:
input_bin_edges = mantid.CreateSampleWorkspace()
input_point_data = mantid.ConvertToPointData(input_bin_edges)
a_mantid = mantid.ExtractSpectra(
    input_point_data, StartWorkspaceIndex=0, EndWorkspaceIndex=10
)
b_mantid = mantid.ExtractSpectra(
    input_point_data, StartWorkspaceIndex=10, EndWorkspaceIndex=20
)
a_scipp = scn.from_mantid(a_mantid)
b_scipp = scn.from_mantid(b_mantid)
CreateSampleWorkspace-[Notice] CreateSampleWorkspace started
CreateSampleWorkspace-[Notice] CreateSampleWorkspace successful, Duration 0.00 seconds
ConvertToPointData-[Notice] ConvertToPointData started
ConvertToPointData-[Notice] ConvertToPointData successful, Duration 0.00 seconds
ExtractSpectra-[Notice] ExtractSpectra started
ExtractSpectra-[Notice] ExtractSpectra successful, Duration 0.00 seconds
ExtractSpectra-[Notice] ExtractSpectra started
ExtractSpectra-[Notice] ExtractSpectra successful, Duration 0.00 seconds

Generic algorithms#

CloneWorkspace#

[3]:
cloned = mantid.CloneWorkspace(InputWorkspace=input_point_data, OutputWorkspace='copy')
cloned
CloneWorkspace-[Notice] CloneWorkspace started
CloneWorkspace-[Notice] CloneWorkspace successful, Duration 0.00 seconds
[3]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[4]:
copy = a_scipp.copy()
copy
[4]:
  • data
    scipp
    DataArray
    (spectrum: 11, tof: 100)
    float64
    counts
    0.3, 0.3, ..., 0.3, 0.3
  • sample
    scipp
    Variable
    ()
    PyObject
    <mantid.api._api.Sample object at 0x7f1eec139150>
  • instrument_name
    str
    ()
    basic_rect
  • run_title
    scipp
    Variable
    ()
    string
    𝟙
    Test Workspace
  • start_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • end_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00
  • run_start
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • run_end
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00

DeleteWorkspace#

[5]:
mantid.DeleteWorkspace(Workspace=cloned)
DeleteWorkspace-[Notice] DeleteWorkspace started
DeleteWorkspace-[Notice] DeleteWorkspace successful, Duration 0.00 seconds

Equivalent in scipp:

[6]:
del copy

ExtractSingleSpectrum#

[7]:
spec = mantid.ExtractSingleSpectrum(
    InputWorkspace=input_point_data, OutputWorkspace='spec', WorkspaceIndex=7
)
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum started
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum successful, Duration 0.00 seconds

Equivalent in scipp:

[8]:
spec = a_scipp['spectrum', 7]

If an actual copy is required use:

[9]:
spec = a_scipp['spectrum', 7].copy()

ExtractSpectra / CropWorkspace#

[10]:
mantid.ExtractSpectra(
    InputWorkspace=input_point_data,
    OutputWorkspace='spectra',
    StartWorkspaceIndex=1,
    EndWorkspaceIndex=4,
)
ExtractSpectra-[Notice] ExtractSpectra started
ExtractSpectra-[Notice] ExtractSpectra successful, Duration 0.00 seconds
[10]:
Workspace2D
Title: Test Workspace
Histograms: 4
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[11]:
a_scipp['spectrum', 1:5]
[11]:
  • data
    scipp
    DataArray
    (spectrum: 4, tof: 100)
    float64
    counts
    0.3, 0.3, ..., 0.3, 0.3
  • sample
    scipp
    Variable
    ()
    PyObject
    <mantid.api._api.Sample object at 0x7f1e7e9e2a40>
  • instrument_name
    str
    ()
    basic_rect
  • run_title
    scipp
    Variable
    ()
    string
    𝟙
    Test Workspace
  • start_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • end_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00
  • run_start
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • run_end
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00

If an actual copy is required use:

[12]:
spectra = a_scipp['spectrum', 1:5].copy()

Transpose#

[13]:
mantid.Transpose(InputWorkspace=input_point_data, OutputWorkspace='data')
Transpose-[Notice] Transpose started
Transpose-[Notice] Transpose successful, Duration 0.00 seconds
[13]:
Workspace2D
Title: Test Workspace
Histograms: 100
Bins: 200
Data points
X axis: Spectrum /
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp: Transposing is implicit and automatic based on dimension labels and not required for any of the common operations, including plotting.

AppendSpectra#

[14]:
mantid.AppendSpectra(
    InputWorkspace1=a_mantid, InputWorkspace2=b_mantid, OutputWorkspace='combined'
)
AppendSpectra-[Notice] AppendSpectra started
AppendSpectra-[Notice] AppendSpectra successful, Duration 0.00 seconds
[14]:
Workspace2D
Title: Test Workspace
Histograms: 22
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[15]:
data = sc.concat([a_scipp['data'], b_scipp['data']], 'spectrum')
data
[15]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (38.00 KB)
    • spectrum: 22
    • tof: 100
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [0.008 0.072 5. ], [0.016 0. 5. ]
      Values:
      array([[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], [0. , 0.024, 5. ], [0. , 0.032, 5. ], [0. , 0.04 , 5. ], [0. , 0.048, 5. ], [0. , 0.056, 5. ], [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ], [0.008, 0. , 5. ], [0.008, 0.008, 5. ], [0.008, 0.016, 5. ], [0.008, 0.024, 5. ], [0.008, 0.032, 5. ], [0.008, 0.04 , 5. ], [0.008, 0.048, 5. ], [0.008, 0.056, 5. ], [0.008, 0.064, 5. ], [0.008, 0.072, 5. ], [0.016, 0. , 5. ]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 20, 21
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21], dtype=int32)
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • (spectrum, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

ConjoinXRuns#

[16]:
mantid.ConjoinXRuns(InputWorkspaces=['a_mantid', 'b_mantid'], OutputWorkspace='data')
ConjoinXRuns-[Notice] ConjoinXRuns started
ConjoinXRuns-[Notice] ConjoinXRuns successful, Duration 0.00 seconds
[16]:
Workspace2D
Title: Test Workspace
Histograms: 11
Bins: 200
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[17]:
sc.concat([a_scipp['data'], b_scipp['data']], 'tof')
[17]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (98.34 KB)
    • spectrum: 11
    • tof: 200
    • position
      (tof, spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [0.008 0.072 5. ], [0.016 0. 5. ]
      Values:
      array([[[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], ..., [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]], [[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], ..., [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]], [[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], ..., [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]], ..., [[0.008, 0. , 5. ], [0.008, 0.008, 5. ], [0.008, 0.016, 5. ], ..., [0.008, 0.064, 5. ], [0.008, 0.072, 5. ], [0.016, 0. , 5. ]], [[0.008, 0. , 5. ], [0.008, 0.008, 5. ], [0.008, 0.016, 5. ], ..., [0.008, 0.064, 5. ], [0.008, 0.072, 5. ], [0.016, 0. , 5. ]], [[0.008, 0. , 5. ], [0.008, 0.008, 5. ], [0.008, 0.016, 5. ], ..., [0.008, 0.064, 5. ], [0.008, 0.072, 5. ], [0.016, 0. , 5. ]]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (tof, spectrum)
      int32
      1, 2, ..., 20, 21
      Values:
      array([[ 1, 2, 3, ..., 9, 10, 11], [ 1, 2, 3, ..., 9, 10, 11], [ 1, 2, 3, ..., 9, 10, 11], ..., [11, 12, 13, ..., 19, 20, 21], [11, 12, 13, ..., 19, 20, 21], [11, 12, 13, ..., 19, 20, 21]], dtype=int32)
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900., 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • (spectrum, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

ConjoinSpectra#

[18]:
mantid.ConjoinSpectra(
    InputWorkspaces='a_mantid, b_mantid', OutputWorkspace='out', WorkspaceIndex=7
)
ConjoinSpectra-[Notice] ConjoinSpectra started
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum started (child)
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum successful, Duration 0.00 seconds
RenameWorkspace-[Notice] RenameWorkspace started (child)
RenameWorkspace-[Notice] RenameWorkspace successful, Duration 0.00 seconds
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum started (child)
ExtractSingleSpectrum-[Notice] ExtractSingleSpectrum successful, Duration 0.00 seconds
ConjoinWorkspaces-[Notice] ConjoinWorkspaces started (child)
ConjoinWorkspaces-[Notice] ConjoinWorkspaces successful, Duration 0.00 seconds
ConjoinSpectra-[Notice] ConjoinSpectra successful, Duration 0.00 seconds
[18]:
Workspace2D
Title: Test Workspace
Histograms: 2
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[19]:
sc.concat([a_scipp['data'], b_scipp['data']], 'spectra')['spectrum', 7]
[19]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (6.20 KB out of 38.00 KB)
    • spectra: 2
    • tof: 100
    • position
      (spectra)
      vector3
      m
      [0. 0.056 5. ], [0.008 0.056 5. ]
      Values:
      array([[0. , 0.056, 5. ], [0.008, 0.056, 5. ]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectra)
      int32
      8, 18
      Values:
      array([ 8, 18], dtype=int32)
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • (spectra, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]])

Or more efficiently

[20]:
sc.concat([a_scipp['data']['spectrum', 7], b_scipp['data']['spectrum', 7]], 'spectrum')
[20]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (6.20 KB)
    • spectrum: 2
    • tof: 100
    • position
      (spectrum)
      vector3
      m
      [0. 0.056 5. ], [0.008 0.056 5. ]
      Values:
      array([[0. , 0.056, 5. ], [0.008, 0.056, 5. ]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      8, 18
      Values:
      array([ 8, 18], dtype=int32)
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • (spectrum, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3], [ 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 10.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3]])

GroupWorkspaces#

[21]:
mantid.GroupWorkspaces(InputWorkspaces='a_mantid, b_mantid', OutputWorkspace='data')
GroupWorkspaces-[Notice] GroupWorkspaces started
[21]:
WorkspaceGroup
 -- a_mantid
 -- b_mantid
GroupWorkspaces-[Notice] GroupWorkspaces successful, Duration 0.00 seconds

Equivalent in scipp:

[22]:
sc.Dataset(data={'data1': a_scipp['data'], 'data2': a_scipp['data'].copy()})
[22]:
Show/Hide data repr Show/Hide attributes
scipp.Dataset (38.68 KB)
    • spectrum: 11
    • tof: 100
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [0. 0.072 5. ], [0.008 0. 5. ]
      Values:
      array([[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], [0. , 0.024, 5. ], [0. , 0.032, 5. ], [0. , 0.04 , 5. ], [0. , 0.048, 5. ], [0. , 0.056, 5. ], [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 10, 11
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], dtype=int32)
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • data1
      (spectrum, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])
    • data2
      (spectrum, tof)
      float64
      counts
      0.3, 0.3, ..., 0.3, 0.3
      σ = 0.548, 0.548, ..., 0.548, 0.548
      Values:
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

      Variances (σ²):
      array([[0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], ..., [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3], [0.3, 0.3, 0.3, ..., 0.3, 0.3, 0.3]])

This requires aligned dimensions (matching coordinates) in all input arrays. It is a more powerful concept than that provided by WorkspaceGroups, but restricted. Slicing for example can be applied to the whole dataset and items are handled accordingly. For a loose collection of objects, more similar to the WorkspaceGroup concept, use scipp.DataGroup or a Python dict or list for grouping unaligned data.

[23]:
sc.DataGroup({'data1': a_scipp, 'data2': a_scipp.copy()})
[23]:
  • scipp
    DataGroup
    (spectrum: 11, tof: 100)
      • data
        scipp
        DataArray
        (spectrum: 11, tof: 100)
        float64
        counts
        0.3, 0.3, ..., 0.3, 0.3
      • sample
        scipp
        Variable
        ()
        PyObject
        <mantid.api._api.Sample object at 0x7f1e7e9e2a40>
      • instrument_name
        str
        ()
        basic_rect
      • run_title
        scipp
        Variable
        ()
        string
        𝟙
        Test Workspace
      • start_time
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T00:00:00
      • end_time
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T01:00:00
      • run_start
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T00:00:00
      • run_end
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T01:00:00
  • scipp
    DataGroup
    (spectrum: 11, tof: 100)
      • data
        scipp
        DataArray
        (spectrum: 11, tof: 100)
        float64
        counts
        0.3, 0.3, ..., 0.3, 0.3
      • sample
        scipp
        Variable
        ()
        PyObject
        <mantid.api._api.Sample object at 0x7f1e7e87d930>
      • instrument_name
        str
        ()
        basic_rect
      • run_title
        scipp
        Variable
        ()
        string
        𝟙
        Test Workspace
      • start_time
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T00:00:00
      • end_time
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T01:00:00
      • run_start
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T00:00:00
      • run_end
        scipp
        Variable
        ()
        string
        𝟙
        2010-01-01T01:00:00

Rebin Workspace2D into Workspace2D#

[24]:
mantid.Rebin(
    InputWorkspace=input_point_data, OutputWorkspace='histo', Params='0,100,20000'
)
Rebin-[Notice] Rebin started
Rebin-[Notice] Rebin successful, Duration 0.00 seconds
[24]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 200
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[25]:
edges = sc.arange(dim='tof', unit='us', start=0.0, stop=20000.0, step=100.0)
data = scn.from_mantid(input_bin_edges)['data']
sc.rebin(data, tof=edges)
[25]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (631.15 KB)
    • spectrum: 200
    • tof: 199
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      0.0, 100.0, ..., 1.980e+04, 1.990e+04
      Values:
      array([ 0., 100., 200., 300., 400., 500., 600., 700., 800., 900., 1000., 1100., 1200., 1300., 1400., 1500., 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300., 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100., 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900., 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700., 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500., 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300., 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100., 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900., 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700., 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500., 9600., 9700., 9800., 9900., 10000., 10100., 10200., 10300., 10400., 10500., 10600., 10700., 10800., 10900., 11000., 11100., 11200., 11300., 11400., 11500., 11600., 11700., 11800., 11900., 12000., 12100., 12200., 12300., 12400., 12500., 12600., 12700., 12800., 12900., 13000., 13100., 13200., 13300., 13400., 13500., 13600., 13700., 13800., 13900., 14000., 14100., 14200., 14300., 14400., 14500., 14600., 14700., 14800., 14900., 15000., 15100., 15200., 15300., 15400., 15500., 15600., 15700., 15800., 15900., 16000., 16100., 16200., 16300., 16400., 16500., 16600., 16700., 16800., 16900., 17000., 17100., 17200., 17300., 17400., 17500., 17600., 17700., 17800., 17900., 18000., 18100., 18200., 18300., 18400., 18500., 18600., 18700., 18800., 18900., 19000., 19100., 19200., 19300., 19400., 19500., 19600., 19700., 19800., 19900.])
    • (spectrum, tof)
      float64
      counts
      0.15, 0.15, ..., 0.15, 0.15
      σ = 0.387, 0.387, ..., 0.387, 0.387
      Values:
      array([[0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], ..., [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15]])

      Variances (σ²):
      array([[0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], ..., [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15], [0.15, 0.15, 0.15, ..., 0.15, 0.15, 0.15]])

Rebin EventWorkspace preserving events#

[26]:
event_workspace = mantid.CreateSampleWorkspace(WorkspaceType='Event')

mantid.Rebin(
    InputWorkspace=event_workspace,
    OutputWorkspace='rebinned_events',
    Params='0,100,20000',
    PreserveEvents=True,
)
CreateSampleWorkspace-[Notice] CreateSampleWorkspace started
CreateSampleWorkspace-[Notice] CreateSampleWorkspace successful, Duration 0.01 seconds
Rebin-[Notice] Rebin started
[26]:
EventWorkspace
Title: Test Workspace
Histograms: 200
Bins: 200
Histogram
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Events: 190000
Rebin-[Notice] Rebin successful, Duration 0.00 seconds

Equivalent in scipp:

[27]:
events = scn.from_mantid(event_workspace)['data']
tof_edges = sc.arange(dim='tof', unit='us', start=0.0, stop=20000.0, step=100.0)
events.bin(tof=tof_edges)
[27]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (4.95 MB)
    • spectrum: 200
    • tof: 199
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      0.0, 100.0, ..., 1.980e+04, 1.990e+04
      Values:
      array([ 0., 100., 200., 300., 400., 500., 600., 700., 800., 900., 1000., 1100., 1200., 1300., 1400., 1500., 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300., 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100., 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900., 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700., 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500., 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300., 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100., 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900., 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700., 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500., 9600., 9700., 9800., 9900., 10000., 10100., 10200., 10300., 10400., 10500., 10600., 10700., 10800., 10900., 11000., 11100., 11200., 11300., 11400., 11500., 11600., 11700., 11800., 11900., 12000., 12100., 12200., 12300., 12400., 12500., 12600., 12700., 12800., 12900., 13000., 13100., 13200., 13300., 13400., 13500., 13600., 13700., 13800., 13900., 14000., 14100., 14200., 14300., 14400., 14500., 14600., 14700., 14800., 14900., 15000., 15100., 15200., 15300., 15400., 15500., 15600., 15700., 15800., 15900., 16000., 16100., 16200., 16300., 16400., 16500., 16600., 16700., 16800., 16900., 17000., 17100., 17200., 17300., 17400., 17500., 17600., 17700., 17800., 17900., 18000., 18100., 18200., 18300., 18400., 18500., 18600., 18700., 18800., 18900., 19000., 19100., 19200., 19300., 19400., 19500., 19600., 19700., 19800., 19900.])
    • (spectrum, tof)
      DataArrayView
      binned data [len=4, len=3, ..., len=4, len=3]
      dim='event',
      content=DataArray(
                dims=(event: 189287),
                data=float32[counts],
                coords={'tof':float64[µs], 'pulse_time':datetime64[ns]})

Or providing a bin size:

[28]:
events = scn.from_mantid(event_workspace)['data']
events.bin(tof=100.0 * sc.Unit('us'))
[28]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (4.97 MB)
    • spectrum: 200
    • tof: 200
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      0.0, 100.0, ..., 1.990e+04, 2.000e+04
      Values:
      array([ 0., 100., 200., 300., 400., 500., 600., 700., 800., 900., 1000., 1100., 1200., 1300., 1400., 1500., 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300., 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100., 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900., 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700., 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500., 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300., 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100., 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900., 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700., 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500., 9600., 9700., 9800., 9900., 10000., 10100., 10200., 10300., 10400., 10500., 10600., 10700., 10800., 10900., 11000., 11100., 11200., 11300., 11400., 11500., 11600., 11700., 11800., 11900., 12000., 12100., 12200., 12300., 12400., 12500., 12600., 12700., 12800., 12900., 13000., 13100., 13200., 13300., 13400., 13500., 13600., 13700., 13800., 13900., 14000., 14100., 14200., 14300., 14400., 14500., 14600., 14700., 14800., 14900., 15000., 15100., 15200., 15300., 15400., 15500., 15600., 15700., 15800., 15900., 16000., 16100., 16200., 16300., 16400., 16500., 16600., 16700., 16800., 16900., 17000., 17100., 17200., 17300., 17400., 17500., 17600., 17700., 17800., 17900., 18000., 18100., 18200., 18300., 18400., 18500., 18600., 18700., 18800., 18900., 19000., 19100., 19200., 19300., 19400., 19500., 19600., 19700., 19800., 19900., 20000.])
    • (spectrum, tof)
      DataArrayView
      binned data [len=4, len=3, ..., len=3, len=4]
      dim='event',
      content=DataArray(
                dims=(event: 190000),
                data=float32[counts],
                coords={'tof':float64[µs], 'pulse_time':datetime64[ns]})

Or providing a bin count

[29]:
events = scn.from_mantid(event_workspace)['data']
events.bin(tof=201)
[29]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (4.97 MB)
    • spectrum: 200
    • tof: 201
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      0.0, 99.502, ..., 1.990e+04, 2.000e+04
      Values:
      array([ 0. , 99.50248756, 199.00497512, 298.50746269, 398.00995025, 497.51243781, 597.01492537, 696.51741294, 796.0199005 , 895.52238806, 995.02487562, 1094.52736318, 1194.02985075, 1293.53233831, 1393.03482587, 1492.53731343, 1592.039801 , 1691.54228856, 1791.04477612, 1890.54726368, 1990.04975124, 2089.55223881, 2189.05472637, 2288.55721393, 2388.05970149, 2487.56218905, 2587.06467662, 2686.56716418, 2786.06965174, 2885.5721393 , 2985.07462687, 3084.57711443, 3184.07960199, 3283.58208955, 3383.08457711, 3482.58706468, 3582.08955224, 3681.5920398 , 3781.09452736, 3880.59701493, 3980.09950249, 4079.60199005, 4179.10447761, 4278.60696517, 4378.10945274, 4477.6119403 , 4577.11442786, 4676.61691542, 4776.11940299, 4875.62189055, 4975.12437811, 5074.62686567, 5174.12935323, 5273.6318408 , 5373.13432836, 5472.63681592, 5572.13930348, 5671.64179104, 5771.14427861, 5870.64676617, 5970.14925373, 6069.65174129, 6169.15422886, 6268.65671642, 6368.15920398, 6467.66169154, 6567.1641791 , 6666.66666667, 6766.16915423, 6865.67164179, 6965.17412935, 7064.67661692, 7164.17910448, 7263.68159204, 7363.1840796 , 7462.68656716, 7562.18905473, 7661.69154229, 7761.19402985, 7860.69651741, 7960.19900498, 8059.70149254, 8159.2039801 , 8258.70646766, 8358.20895522, 8457.71144279, 8557.21393035, 8656.71641791, 8756.21890547, 8855.72139303, 8955.2238806 , 9054.72636816, 9154.22885572, 9253.73134328, 9353.23383085, 9452.73631841, 9552.23880597, 9651.74129353, 9751.24378109, 9850.74626866, 9950.24875622, 10049.75124378, 10149.25373134, 10248.75621891, 10348.25870647, 10447.76119403, 10547.26368159, 10646.76616915, 10746.26865672, 10845.77114428, 10945.27363184, 11044.7761194 , 11144.27860697, 11243.78109453, 11343.28358209, 11442.78606965, 11542.28855721, 11641.79104478, 11741.29353234, 11840.7960199 , 11940.29850746, 12039.80099502, 12139.30348259, 12238.80597015, 12338.30845771, 12437.81094527, 12537.31343284, 12636.8159204 , 12736.31840796, 12835.82089552, 12935.32338308, 13034.82587065, 13134.32835821, 13233.83084577, 13333.33333333, 13432.8358209 , 13532.33830846, 13631.84079602, 13731.34328358, 13830.84577114, 13930.34825871, 14029.85074627, 14129.35323383, 14228.85572139, 14328.35820896, 14427.86069652, 14527.36318408, 14626.86567164, 14726.3681592 , 14825.87064677, 14925.37313433, 15024.87562189, 15124.37810945, 15223.88059701, 15323.38308458, 15422.88557214, 15522.3880597 , 15621.89054726, 15721.39303483, 15820.89552239, 15920.39800995, 16019.90049751, 16119.40298507, 16218.90547264, 16318.4079602 , 16417.91044776, 16517.41293532, 16616.91542289, 16716.41791045, 16815.92039801, 16915.42288557, 17014.92537313, 17114.4278607 , 17213.93034826, 17313.43283582, 17412.93532338, 17512.43781095, 17611.94029851, 17711.44278607, 17810.94527363, 17910.44776119, 18009.95024876, 18109.45273632, 18208.95522388, 18308.45771144, 18407.960199 , 18507.46268657, 18606.96517413, 18706.46766169, 18805.97014925, 18905.47263682, 19004.97512438, 19104.47761194, 19203.9800995 , 19303.48258706, 19402.98507463, 19502.48756219, 19601.99004975, 19701.49253731, 19800.99502488, 19900.49751244, 20000. ])
    • (spectrum, tof)
      DataArrayView
      binned data [len=4, len=3, ..., len=3, len=4]
      dim='event',
      content=DataArray(
                dims=(event: 190000),
                data=float32[counts],
                coords={'tof':float64[µs], 'pulse_time':datetime64[ns]})

Rebin EventWorkspace into Workspace2D#

[30]:
mantid.Rebin(
    InputWorkspace=event_workspace,
    OutputWorkspace='histo',
    Params=[0, 100, 20000],
    PreserveEvents=False,
)
Rebin-[Notice] Rebin started
Rebin-[Notice] Rebin successful, Duration 0.00 seconds
[30]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 200
Histogram
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[31]:
tof_edges = sc.arange(dim='tof', unit='us', start=0.0, stop=20000.0, step=100.0)
events.hist(tof=tof_edges)
[31]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (320.21 KB)
    • spectrum: 200
    • tof: 199
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      0.0, 100.0, ..., 1.980e+04, 1.990e+04
      Values:
      array([ 0., 100., 200., 300., 400., 500., 600., 700., 800., 900., 1000., 1100., 1200., 1300., 1400., 1500., 1600., 1700., 1800., 1900., 2000., 2100., 2200., 2300., 2400., 2500., 2600., 2700., 2800., 2900., 3000., 3100., 3200., 3300., 3400., 3500., 3600., 3700., 3800., 3900., 4000., 4100., 4200., 4300., 4400., 4500., 4600., 4700., 4800., 4900., 5000., 5100., 5200., 5300., 5400., 5500., 5600., 5700., 5800., 5900., 6000., 6100., 6200., 6300., 6400., 6500., 6600., 6700., 6800., 6900., 7000., 7100., 7200., 7300., 7400., 7500., 7600., 7700., 7800., 7900., 8000., 8100., 8200., 8300., 8400., 8500., 8600., 8700., 8800., 8900., 9000., 9100., 9200., 9300., 9400., 9500., 9600., 9700., 9800., 9900., 10000., 10100., 10200., 10300., 10400., 10500., 10600., 10700., 10800., 10900., 11000., 11100., 11200., 11300., 11400., 11500., 11600., 11700., 11800., 11900., 12000., 12100., 12200., 12300., 12400., 12500., 12600., 12700., 12800., 12900., 13000., 13100., 13200., 13300., 13400., 13500., 13600., 13700., 13800., 13900., 14000., 14100., 14200., 14300., 14400., 14500., 14600., 14700., 14800., 14900., 15000., 15100., 15200., 15300., 15400., 15500., 15600., 15700., 15800., 15900., 16000., 16100., 16200., 16300., 16400., 16500., 16600., 16700., 16800., 16900., 17000., 17100., 17200., 17300., 17400., 17500., 17600., 17700., 17800., 17900., 18000., 18100., 18200., 18300., 18400., 18500., 18600., 18700., 18800., 18900., 19000., 19100., 19200., 19300., 19400., 19500., 19600., 19700., 19800., 19900.])
    • (spectrum, tof)
      float32
      counts
      4.0, 3.0, ..., 4.0, 3.0
      σ = 2.0, 1.7320508, ..., 2.0, 1.7320508
      Values:
      array([[4., 3., 0., ..., 3., 4., 5.], [4., 3., 2., ..., 1., 6., 2.], [4., 3., 2., ..., 3., 4., 4.], ..., [4., 3., 2., ..., 3., 4., 5.], [3., 4., 2., ..., 3., 4., 4.], [3., 4., 4., ..., 3., 4., 3.]], dtype=float32)

      Variances (σ²):
      array([[4., 3., 0., ..., 3., 4., 5.], [4., 3., 2., ..., 1., 6., 2.], [4., 3., 2., ..., 3., 4., 4.], ..., [4., 3., 2., ..., 3., 4., 5.], [3., 4., 2., ..., 3., 4., 4.], [3., 4., 4., ..., 3., 4., 3.]], dtype=float32)

Rebin with logarithmic bins#

[32]:
mantid.Rebin(
    InputWorkspace=event_workspace, OutputWorkspace='histo', Params='2,-0.035,10'
)
Rebin-[Notice] Rebin started
Rebin-[Notice] Rebin successful, Duration 0.00 seconds
[32]:
EventWorkspace
Title: Test Workspace
Histograms: 200
Bins: 47
Histogram
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Events: 190000

Equivalent in scipp:

[33]:
edges = sc.geomspace(dim='tof', unit='us', start=2, stop=10, num=100)
events.bin(tof=edges)
[33]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (320.71 KB)
    • spectrum: 200
    • tof: 99
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [ 0.072 0.064 10. ], [ 0.072 0.072 10. ]
      Values:
      array([[0.0e+00, 0.0e+00, 5.0e+00], [0.0e+00, 8.0e-03, 5.0e+00], [0.0e+00, 1.6e-02, 5.0e+00], [0.0e+00, 2.4e-02, 5.0e+00], [0.0e+00, 3.2e-02, 5.0e+00], [0.0e+00, 4.0e-02, 5.0e+00], [0.0e+00, 4.8e-02, 5.0e+00], [0.0e+00, 5.6e-02, 5.0e+00], [0.0e+00, 6.4e-02, 5.0e+00], [0.0e+00, 7.2e-02, 5.0e+00], [8.0e-03, 0.0e+00, 5.0e+00], [8.0e-03, 8.0e-03, 5.0e+00], [8.0e-03, 1.6e-02, 5.0e+00], [8.0e-03, 2.4e-02, 5.0e+00], [8.0e-03, 3.2e-02, 5.0e+00], [8.0e-03, 4.0e-02, 5.0e+00], [8.0e-03, 4.8e-02, 5.0e+00], [8.0e-03, 5.6e-02, 5.0e+00], [8.0e-03, 6.4e-02, 5.0e+00], [8.0e-03, 7.2e-02, 5.0e+00], [1.6e-02, 0.0e+00, 5.0e+00], [1.6e-02, 8.0e-03, 5.0e+00], [1.6e-02, 1.6e-02, 5.0e+00], [1.6e-02, 2.4e-02, 5.0e+00], [1.6e-02, 3.2e-02, 5.0e+00], [1.6e-02, 4.0e-02, 5.0e+00], [1.6e-02, 4.8e-02, 5.0e+00], [1.6e-02, 5.6e-02, 5.0e+00], [1.6e-02, 6.4e-02, 5.0e+00], [1.6e-02, 7.2e-02, 5.0e+00], [2.4e-02, 0.0e+00, 5.0e+00], [2.4e-02, 8.0e-03, 5.0e+00], [2.4e-02, 1.6e-02, 5.0e+00], [2.4e-02, 2.4e-02, 5.0e+00], [2.4e-02, 3.2e-02, 5.0e+00], [2.4e-02, 4.0e-02, 5.0e+00], [2.4e-02, 4.8e-02, 5.0e+00], [2.4e-02, 5.6e-02, 5.0e+00], [2.4e-02, 6.4e-02, 5.0e+00], [2.4e-02, 7.2e-02, 5.0e+00], [3.2e-02, 0.0e+00, 5.0e+00], [3.2e-02, 8.0e-03, 5.0e+00], [3.2e-02, 1.6e-02, 5.0e+00], [3.2e-02, 2.4e-02, 5.0e+00], [3.2e-02, 3.2e-02, 5.0e+00], [3.2e-02, 4.0e-02, 5.0e+00], [3.2e-02, 4.8e-02, 5.0e+00], [3.2e-02, 5.6e-02, 5.0e+00], [3.2e-02, 6.4e-02, 5.0e+00], [3.2e-02, 7.2e-02, 5.0e+00], [4.0e-02, 0.0e+00, 5.0e+00], [4.0e-02, 8.0e-03, 5.0e+00], [4.0e-02, 1.6e-02, 5.0e+00], [4.0e-02, 2.4e-02, 5.0e+00], [4.0e-02, 3.2e-02, 5.0e+00], [4.0e-02, 4.0e-02, 5.0e+00], [4.0e-02, 4.8e-02, 5.0e+00], [4.0e-02, 5.6e-02, 5.0e+00], [4.0e-02, 6.4e-02, 5.0e+00], [4.0e-02, 7.2e-02, 5.0e+00], [4.8e-02, 0.0e+00, 5.0e+00], [4.8e-02, 8.0e-03, 5.0e+00], [4.8e-02, 1.6e-02, 5.0e+00], [4.8e-02, 2.4e-02, 5.0e+00], [4.8e-02, 3.2e-02, 5.0e+00], [4.8e-02, 4.0e-02, 5.0e+00], [4.8e-02, 4.8e-02, 5.0e+00], [4.8e-02, 5.6e-02, 5.0e+00], [4.8e-02, 6.4e-02, 5.0e+00], [4.8e-02, 7.2e-02, 5.0e+00], [5.6e-02, 0.0e+00, 5.0e+00], [5.6e-02, 8.0e-03, 5.0e+00], [5.6e-02, 1.6e-02, 5.0e+00], [5.6e-02, 2.4e-02, 5.0e+00], [5.6e-02, 3.2e-02, 5.0e+00], [5.6e-02, 4.0e-02, 5.0e+00], [5.6e-02, 4.8e-02, 5.0e+00], [5.6e-02, 5.6e-02, 5.0e+00], [5.6e-02, 6.4e-02, 5.0e+00], [5.6e-02, 7.2e-02, 5.0e+00], [6.4e-02, 0.0e+00, 5.0e+00], [6.4e-02, 8.0e-03, 5.0e+00], [6.4e-02, 1.6e-02, 5.0e+00], [6.4e-02, 2.4e-02, 5.0e+00], [6.4e-02, 3.2e-02, 5.0e+00], [6.4e-02, 4.0e-02, 5.0e+00], [6.4e-02, 4.8e-02, 5.0e+00], [6.4e-02, 5.6e-02, 5.0e+00], [6.4e-02, 6.4e-02, 5.0e+00], [6.4e-02, 7.2e-02, 5.0e+00], [7.2e-02, 0.0e+00, 5.0e+00], [7.2e-02, 8.0e-03, 5.0e+00], [7.2e-02, 1.6e-02, 5.0e+00], [7.2e-02, 2.4e-02, 5.0e+00], [7.2e-02, 3.2e-02, 5.0e+00], [7.2e-02, 4.0e-02, 5.0e+00], [7.2e-02, 4.8e-02, 5.0e+00], [7.2e-02, 5.6e-02, 5.0e+00], [7.2e-02, 6.4e-02, 5.0e+00], [7.2e-02, 7.2e-02, 5.0e+00], [0.0e+00, 0.0e+00, 1.0e+01], [0.0e+00, 8.0e-03, 1.0e+01], [0.0e+00, 1.6e-02, 1.0e+01], [0.0e+00, 2.4e-02, 1.0e+01], [0.0e+00, 3.2e-02, 1.0e+01], [0.0e+00, 4.0e-02, 1.0e+01], [0.0e+00, 4.8e-02, 1.0e+01], [0.0e+00, 5.6e-02, 1.0e+01], [0.0e+00, 6.4e-02, 1.0e+01], [0.0e+00, 7.2e-02, 1.0e+01], [8.0e-03, 0.0e+00, 1.0e+01], [8.0e-03, 8.0e-03, 1.0e+01], [8.0e-03, 1.6e-02, 1.0e+01], [8.0e-03, 2.4e-02, 1.0e+01], [8.0e-03, 3.2e-02, 1.0e+01], [8.0e-03, 4.0e-02, 1.0e+01], [8.0e-03, 4.8e-02, 1.0e+01], [8.0e-03, 5.6e-02, 1.0e+01], [8.0e-03, 6.4e-02, 1.0e+01], [8.0e-03, 7.2e-02, 1.0e+01], [1.6e-02, 0.0e+00, 1.0e+01], [1.6e-02, 8.0e-03, 1.0e+01], [1.6e-02, 1.6e-02, 1.0e+01], [1.6e-02, 2.4e-02, 1.0e+01], [1.6e-02, 3.2e-02, 1.0e+01], [1.6e-02, 4.0e-02, 1.0e+01], [1.6e-02, 4.8e-02, 1.0e+01], [1.6e-02, 5.6e-02, 1.0e+01], [1.6e-02, 6.4e-02, 1.0e+01], [1.6e-02, 7.2e-02, 1.0e+01], [2.4e-02, 0.0e+00, 1.0e+01], [2.4e-02, 8.0e-03, 1.0e+01], [2.4e-02, 1.6e-02, 1.0e+01], [2.4e-02, 2.4e-02, 1.0e+01], [2.4e-02, 3.2e-02, 1.0e+01], [2.4e-02, 4.0e-02, 1.0e+01], [2.4e-02, 4.8e-02, 1.0e+01], [2.4e-02, 5.6e-02, 1.0e+01], [2.4e-02, 6.4e-02, 1.0e+01], [2.4e-02, 7.2e-02, 1.0e+01], [3.2e-02, 0.0e+00, 1.0e+01], [3.2e-02, 8.0e-03, 1.0e+01], [3.2e-02, 1.6e-02, 1.0e+01], [3.2e-02, 2.4e-02, 1.0e+01], [3.2e-02, 3.2e-02, 1.0e+01], [3.2e-02, 4.0e-02, 1.0e+01], [3.2e-02, 4.8e-02, 1.0e+01], [3.2e-02, 5.6e-02, 1.0e+01], [3.2e-02, 6.4e-02, 1.0e+01], [3.2e-02, 7.2e-02, 1.0e+01], [4.0e-02, 0.0e+00, 1.0e+01], [4.0e-02, 8.0e-03, 1.0e+01], [4.0e-02, 1.6e-02, 1.0e+01], [4.0e-02, 2.4e-02, 1.0e+01], [4.0e-02, 3.2e-02, 1.0e+01], [4.0e-02, 4.0e-02, 1.0e+01], [4.0e-02, 4.8e-02, 1.0e+01], [4.0e-02, 5.6e-02, 1.0e+01], [4.0e-02, 6.4e-02, 1.0e+01], [4.0e-02, 7.2e-02, 1.0e+01], [4.8e-02, 0.0e+00, 1.0e+01], [4.8e-02, 8.0e-03, 1.0e+01], [4.8e-02, 1.6e-02, 1.0e+01], [4.8e-02, 2.4e-02, 1.0e+01], [4.8e-02, 3.2e-02, 1.0e+01], [4.8e-02, 4.0e-02, 1.0e+01], [4.8e-02, 4.8e-02, 1.0e+01], [4.8e-02, 5.6e-02, 1.0e+01], [4.8e-02, 6.4e-02, 1.0e+01], [4.8e-02, 7.2e-02, 1.0e+01], [5.6e-02, 0.0e+00, 1.0e+01], [5.6e-02, 8.0e-03, 1.0e+01], [5.6e-02, 1.6e-02, 1.0e+01], [5.6e-02, 2.4e-02, 1.0e+01], [5.6e-02, 3.2e-02, 1.0e+01], [5.6e-02, 4.0e-02, 1.0e+01], [5.6e-02, 4.8e-02, 1.0e+01], [5.6e-02, 5.6e-02, 1.0e+01], [5.6e-02, 6.4e-02, 1.0e+01], [5.6e-02, 7.2e-02, 1.0e+01], [6.4e-02, 0.0e+00, 1.0e+01], [6.4e-02, 8.0e-03, 1.0e+01], [6.4e-02, 1.6e-02, 1.0e+01], [6.4e-02, 2.4e-02, 1.0e+01], [6.4e-02, 3.2e-02, 1.0e+01], [6.4e-02, 4.0e-02, 1.0e+01], [6.4e-02, 4.8e-02, 1.0e+01], [6.4e-02, 5.6e-02, 1.0e+01], [6.4e-02, 6.4e-02, 1.0e+01], [6.4e-02, 7.2e-02, 1.0e+01], [7.2e-02, 0.0e+00, 1.0e+01], [7.2e-02, 8.0e-03, 1.0e+01], [7.2e-02, 1.6e-02, 1.0e+01], [7.2e-02, 2.4e-02, 1.0e+01], [7.2e-02, 3.2e-02, 1.0e+01], [7.2e-02, 4.0e-02, 1.0e+01], [7.2e-02, 4.8e-02, 1.0e+01], [7.2e-02, 5.6e-02, 1.0e+01], [7.2e-02, 6.4e-02, 1.0e+01], [7.2e-02, 7.2e-02, 1.0e+01]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 199, 200
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200], dtype=int32)
    • tof
      (tof [bin-edge])
      float64
      µs
      2.0, 2.033, ..., 9.839, 10.0
      Values:
      array([ 2. , 2.03277962, 2.0660965 , 2.09995943, 2.13437737, 2.16935942, 2.20491481, 2.24105295, 2.27778338, 2.31511582, 2.35306014, 2.39162635, 2.43082465, 2.47066541, 2.51115915, 2.55231658, 2.59414857, 2.63666618, 2.67988064, 2.72380338, 2.768446 , 2.81382031, 2.8599383 , 2.90681215, 2.95445425, 3.0028772 , 3.05209379, 3.10211704, 3.15296015, 3.20463657, 3.25715996, 3.3105442 , 3.3648034 , 3.41995189, 3.47600426, 3.53297532, 3.59088012, 3.64973397, 3.70955242, 3.77035129, 3.83214663, 3.8949548 , 3.95879237, 4.02367623, 4.08962353, 4.15665169, 4.22477843, 4.29402175, 4.36439996, 4.43593166, 4.50863574, 4.58253143, 4.65763826, 4.73397607, 4.81156505, 4.8904257 , 4.97057885, 5.0520457 , 5.13484778, 5.21900697, 5.30454551, 5.39148602, 5.47985146, 5.56966519, 5.66095096, 5.75373288, 5.84803548, 5.94388368, 6.04130281, 6.14031863, 6.2409573 , 6.34324541, 6.44721001, 6.55287857, 6.66027901, 6.76943973, 6.88038958, 6.99315787, 7.10777441, 7.22426949, 7.34267391, 7.46301895, 7.58533643, 7.70965867, 7.83601852, 7.96444939, 8.09498522, 8.2276605 , 8.36251031, 8.49957028, 8.63887664, 8.7804662 , 8.92437639, 9.07064524, 9.21931141, 9.37041418, 9.52399351, 9.68008997, 9.83874482, 10. ])
    • (spectrum, tof)
      DataArrayView
      binned data [len=0, len=0, ..., len=0, len=0]
      dim='event',
      content=DataArray(
                dims=(event: 61),
                data=float32[counts],
                coords={'tof':float64[µs], 'pulse_time':datetime64[ns]})

Bin edges in scipp can be created from an arbitrary array with increasing values, the use of numpy.geomspace is simply one example for generating bins spaced evenly on a log scale.

Note

Both scipp and Mantid support binary and in-place operations such as + and +=. Mantid’s binary operations call underlying algorithms as part of their implementation. This makes it difficult to change some default behaviour, for example if you want to prevent output workspaces from being registered in Mantid’s Analysis Data Service.

Scale (multiplication)#

[34]:
mantid.Scale(
    InputWorkspace=input_point_data,
    OutputWorkspace=input_point_data,
    Factor=7.5,
    Operation="Multiply",
)
Scale-[Notice] Scale started
Scale-[Notice] Scale successful, Duration 0.00 seconds
[34]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[35]:
a_scipp['data'] *= 7.5
a_scipp
[35]:
  • data
    scipp
    DataArray
    (spectrum: 11, tof: 100)
    float64
    counts
    2.25, 2.25, ..., 2.25, 2.25
  • sample
    scipp
    Variable
    ()
    PyObject
    <mantid.api._api.Sample object at 0x7f1e7e9e2a40>
  • instrument_name
    str
    ()
    basic_rect
  • run_title
    scipp
    Variable
    ()
    string
    𝟙
    Test Workspace
  • start_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • end_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00
  • run_start
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • run_end
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00

Scale (addition)#

[36]:
mantid.Scale(
    InputWorkspace=input_point_data,
    OutputWorkspace='summed',
    Factor=7.5,
    Operation="Add",
)
Scale-[Notice] Scale started
Scale-[Notice] Scale successful, Duration 0.00 seconds
[36]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[37]:
a_scipp['data'] += 7.5 * sc.units.counts
a_scipp
[37]:
  • data
    scipp
    DataArray
    (spectrum: 11, tof: 100)
    float64
    counts
    9.75, 9.75, ..., 9.75, 9.75
  • sample
    scipp
    Variable
    ()
    PyObject
    <mantid.api._api.Sample object at 0x7f1e7e9e2a40>
  • instrument_name
    str
    ()
    basic_rect
  • run_title
    scipp
    Variable
    ()
    string
    𝟙
    Test Workspace
  • start_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • end_time
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00
  • run_start
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T00:00:00
  • run_end
    scipp
    Variable
    ()
    string
    𝟙
    2010-01-01T01:00:00

If the data is not dimensionless, the correct unit must be specified:

[38]:
a_scipp['data'].unit = sc.units.us
try:
    a_scipp['data'] += 7.5
except RuntimeError as err:
    print(str(err))
a_scipp['data'] += 7.5 * sc.units.us  # This is fine now RHS has units
Cannot add µs and dimensionless.

Mantid does not have this safety net.

ScaleX#

[39]:
mantid.ScaleX(
    InputWorkspace=input_point_data,
    OutputWorkspace='output',
    Factor=7.5,
    Operation="Multiply",
)
ScaleX-[Notice] ScaleX started
[39]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00
ScaleX-[Notice] ScaleX successful, Duration 0.00 seconds

Equivalent in scipp:

[40]:
data.coords['tof'] *= 7.5

SumSpectra#

[41]:
mantid.SumSpectra(
    InputWorkspace=input_point_data,
    OutputWorkspace='summed',
    StartWorkspaceIndex=7,
    EndWorkspaceIndex=88,
)
SumSpectra-[Notice] SumSpectra started
SumSpectra-[Notice] SumSpectra successful, Duration 0.00 seconds
[41]:
Workspace2D
Title: Test Workspace
Histograms: 1
Bins: 100
Data points
X axis: Time-of-flight / microsecond
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[42]:
sc.sum(a_scipp['data']['spectrum', 7:89], 'spectrum')
[42]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (4.03 KB)
    • tof: 100
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • tof
      (tof)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • (tof)
      float64
      µs
      69.0, 69.0, ..., 69.0, 69.0
      σ = 8.216, 8.216, ..., 8.216, 8.216
      Values:
      array([ 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 369., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69., 69.])

      Variances (σ²):
      array([ 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 2317.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5, 67.5])

Neutron-scattering specific algorithms#

ConvertUnits#

[43]:
mantid.ConvertUnits(
    InputWorkspace=input_point_data, OutputWorkspace='dspacing', Target='dSpacing'
)
ConvertUnits-[Notice] ConvertUnits started
ConvertUnits-[Warning] Unable to calculate sample-detector distance for 2 spectra. Masking spectrum.
ConvertUnits-[Notice] ConvertUnits successful, Duration 0.00 seconds
[43]:
Workspace2D
Title: Test Workspace
Histograms: 200
Bins: 100
Data points
X axis: d-Spacing / Angstrom
Y axis: Counts
Distribution: False
Instrument: basic_rect (1990-Jan-01 to 1990-Jan-01)
Run start: 2010-Jan-01 00:00:00
Run end:  2010-Jan-01 01:00:00

Equivalent in scipp:

[44]:
dspacing_graph = {
    **scn.conversion.graph.beamline.beamline(scatter=True),
    **scn.conversion.graph.tof.elastic_dspacing('tof'),
}
[45]:
a_scipp['data'].transform_coords('dspacing', graph=dspacing_graph)
[45]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (31.52 KB)
    • spectrum: 11
    • dspacing: 100
    • L1
      ()
      float64
      m
      10.0
      Values:
      array(10.)
    • L2
      (spectrum)
      float64
      m
      5.0, 5.000, ..., 5.001, 5.000
      Values:
      array([5. , 5.0000064 , 5.0000256 , 5.0000576 , 5.0001024 , 5.00016 , 5.00023039, 5.00031359, 5.00040958, 5.00051837, 5.0000064 ])
    • Ltotal
      (spectrum)
      float64
      m
      15.0, 15.000, ..., 15.001, 15.000
      Values:
      array([15. , 15.0000064 , 15.0000256 , 15.0000576 , 15.0001024 , 15.00016 , 15.00023039, 15.00031359, 15.00040958, 15.00051837, 15.0000064 ])
    • dspacing
      (spectrum, dspacing)
      float64
      Å
      inf, inf, ..., 3247.246, 3280.213
      Values:
      array([[ inf, inf, inf, ..., inf, inf, inf], [1.64834838e+01, 4.94504515e+01, 8.24174192e+01, ..., 3.21427935e+03, 3.24724632e+03, 3.28021328e+03], [8.24175511e+00, 2.47252653e+01, 4.12087755e+01, ..., 1.60714225e+03, 1.62362576e+03, 1.64010927e+03], ..., [2.06050471e+00, 6.18151412e+00, 1.03025235e+01, ..., 4.01798418e+02, 4.05919427e+02, 4.10040436e+02], [1.83157634e+00, 5.49472902e+00, 9.15788171e+00, ..., 3.57157387e+02, 3.60820539e+02, 3.64483692e+02], [1.64834838e+01, 4.94504515e+01, 8.24174192e+01, ..., 3.21427935e+03, 3.24724632e+03, 3.28021328e+03]])
    • incident_beam
      ()
      vector3
      m
      [ 0. 0. 10.]
      Values:
      array([ 0., 0., 10.])
    • position
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [0. 0.072 5. ], [0.008 0. 5. ]
      Values:
      array([[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], [0. , 0.024, 5. ], [0. , 0.032, 5. ], [0. , 0.04 , 5. ], [0. , 0.048, 5. ], [0. , 0.056, 5. ], [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]])
    • sample_position
      ()
      vector3
      m
      [0. 0. 0.]
      Values:
      array([0., 0., 0.])
    • scattered_beam
      (spectrum)
      vector3
      m
      [0. 0. 5.], [0. 0.008 5. ], ..., [0. 0.072 5. ], [0.008 0. 5. ]
      Values:
      array([[0. , 0. , 5. ], [0. , 0.008, 5. ], [0. , 0.016, 5. ], [0. , 0.024, 5. ], [0. , 0.032, 5. ], [0. , 0.04 , 5. ], [0. , 0.048, 5. ], [0. , 0.056, 5. ], [0. , 0.064, 5. ], [0. , 0.072, 5. ], [0.008, 0. , 5. ]])
    • source_position
      ()
      vector3
      m
      [ 0. 0. -10.]
      Values:
      array([ 0., 0., -10.])
    • spectrum
      (spectrum)
      int32
      1, 2, ..., 10, 11
      Values:
      array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11], dtype=int32)
    • tof
      (dspacing)
      float64
      µs
      100.0, 300.0, ..., 1.970e+04, 1.990e+04
      Values:
      array([ 100., 300., 500., 700., 900., 1100., 1300., 1500., 1700., 1900., 2100., 2300., 2500., 2700., 2900., 3100., 3300., 3500., 3700., 3900., 4100., 4300., 4500., 4700., 4900., 5100., 5300., 5500., 5700., 5900., 6100., 6300., 6500., 6700., 6900., 7100., 7300., 7500., 7700., 7900., 8100., 8300., 8500., 8700., 8900., 9100., 9300., 9500., 9700., 9900., 10100., 10300., 10500., 10700., 10900., 11100., 11300., 11500., 11700., 11900., 12100., 12300., 12500., 12700., 12900., 13100., 13300., 13500., 13700., 13900., 14100., 14300., 14500., 14700., 14900., 15100., 15300., 15500., 15700., 15900., 16100., 16300., 16500., 16700., 16900., 17100., 17300., 17500., 17700., 17900., 18100., 18300., 18500., 18700., 18900., 19100., 19300., 19500., 19700., 19900.])
    • two_theta
      (spectrum)
      float64
      rad
      0.0, 0.002, ..., 0.014, 0.002
      Values:
      array([0. , 0.0016 , 0.00319999, 0.00479996, 0.00639991, 0.00799983, 0.00959971, 0.01119953, 0.0127993 , 0.014399 , 0.0016 ])
    • (spectrum, dspacing)
      float64
      µs
      17.25, 17.25, ..., 17.25, 17.25
      σ = 4.108, 4.108, ..., 4.108, 4.108
      Values:
      array([[17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25], [17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25], [17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25], ..., [17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25], [17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25], [17.25, 17.25, 17.25, ..., 17.25, 17.25, 17.25]])

      Variances (σ²):
      array([[16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875], [16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875], [16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875], ..., [16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875], [16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875], [16.875, 16.875, 16.875, ..., 16.875, 16.875, 16.875]])

Note

scipp has no equivalent to the EMode and EFixed settings of ConvertUnits. Instead, this information is read from the input data, if available (note that currently only elastic scattering is supported).

Note

The scippneutron module also provides a to_mantid function, which has limited support for converting scipp data to Mantid workspaces. Because scipp offers a more flexible container than a Workspace, in particular MatrixWorkspace, it is not always possible to exactly convert all information to Mantid workspaces.