Scatter3d plot#

The scatter3d plot creates a three-dimensional scatter plot of the data.

[1]:
import plopp as pp
import scipp as sc
import numpy as np

Scatter plot using a positions vector#

The easiest way to generate a scatter plot is to use a coordinate of the data array that contains data of the vector3 dtype.

We first generate some fake data, meant to represent clusters of points in a three-dimensional space.

[2]:
nclusters = 100
npercluster = 1000

position = np.zeros((nclusters, npercluster, 3))
values = np.zeros((nclusters, npercluster))

for n in range(nclusters):
    center = 500.0 * (np.random.random(3) - 0.5)
    r = 20.0 * np.random.normal(size=[npercluster, 3])
    position[n, :] = r + center
    values[n, :] = np.linalg.norm(r, axis=1) + n

da = sc.DataArray(
    data=sc.array(dims=['row'], values=values.flatten(), unit='K'),
    coords={
        'position': sc.vectors(
            dims=['row'], unit='m', values=position.reshape(nclusters * npercluster, 3)
        )
    },
)
da
[2]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (3.05 MB)
    • row: 100000
    • position
      (row)
      vector3
      m
      [ -15.1651176 -161.33568127 -49.62169235], [ -67.51128461 -148.8059098 -33.38572269], ..., [221.69762268 252.54935491 253.19620575], [213.47460047 213.79585372 243.67792539]
      Values:
      array([[ -15.1651176 , -161.33568127, -49.62169235], [ -67.51128461, -148.8059098 , -33.38572269], [ 6.44428944, -101.44589825, -33.17659947], ..., [ 215.78748279, 220.85264231, 258.65548639], [ 221.69762268, 252.54935491, 253.19620575], [ 213.47460047, 213.79585372, 243.67792539]], shape=(100000, 3))
    • (row)
      float64
      K
      19.514, 41.198, ..., 131.654, 129.664
      Values:
      array([ 19.51377836, 41.19755761, 60.60213487, ..., 130.34019432, 131.65363829, 129.66438496], shape=(100000,))

We then simply specify the name of the coordinate that contains the vector positions using the pos argument:

[3]:
pp.scatter3d(da, pos='position', color='black', size=2)
[3]:

Scatter plot with colorbar#

To make a scatter plot with a colorbar mapping data values to colors, use cbar=True.

[4]:
pp.scatter3d(da, pos='position', cbar=True, size=2)
[4]:

Scatter plot using individual coordinates#

It is also possible to create scatter plots using three individual coordinate names for the x, y, z dimensions:

[5]:
time = np.linspace(0, 10, 50)
x = np.cos(time)
y = np.sin(time)

da = sc.DataArray(
    data=sc.array(dims=['row'], values=time),
    coords={
        'x': sc.array(dims=['row'], unit='m', values=x),
        'y': sc.array(dims=['row'], unit='m', values=y),
        'time': sc.array(dims=['row'], unit='s', values=time),
    },
)

pp.scatter3d(da, x='x', y='y', z='time', size=0.2, cbar=True)
[5]: