ess.reduce.nexus.types.EmptyMonitor#
- class ess.reduce.nexus.types.EmptyMonitor(x: SUPER)[source]#
Monitor without neutron data.
- __init__(self, data: Variable, coords: Mapping[str, Variable] | Iterable[tuple[str, Variable]] = {}, masks: Mapping[str, Variable] | Iterable[tuple[str, Variable]] = {}, name: str = '') None#
DataArray initializer.
- Parameters:
data – Data and optionally variances.
coords – Coordinates referenced by dimension.
masks – Masks referenced by name.
name – Name of the data array.
Methods
__init__(self, data[, coords, masks, name])DataArray initializer.
all([dim])Logical AND over input values.
any([dim])Logical OR over input values.
assign(data)Return new data array with updated data.
assign_coords([coords])Return new object with updated or inserted coordinate.
assign_masks([masks])Return new object with updated or inserted masks.
astype(self, type, *[, copy])Converts a Variable or DataArray to a different dtype.
bin([arg_dict, dim])Create binned data by binning input along all dimensions given by edges.
broadcast(*[, dims, shape, sizes])Broadcast a Variable or a DataArray.
ceil(*[, out])Round up to the nearest integer of all values passed in x.
copy(self[, deep])Return a (by default deep) copy.
drop_coords(*args, **kwargs)Overloaded function.
drop_masks(*args, **kwargs)Overloaded function.
flatten([dims, to])Flatten multiple dimensions into a single dimension.
floor(*[, out])Round down to the nearest integer of all values passed in x.
fold(dim, *[, dims, shape, sizes])Fold a single dimension of a variable or data array into multiple dims.
group(*args[, dim])Create binned data by grouping input by one or more coordinates.
groupby(group, *[, bins])Group dataset or data array based on values of specified labels.
hist([arg_dict, dim])Compute a histogram.
max([dim])Maximum of elements in the input.
mean([dim])Arithmetic mean of elements in the input.
median([dim])Compute the median of the input values.
min([dim])Minimum of elements in the input.
nanhist([arg_dict, dim])Compute a histogram, skipping NaN values.
nanmax([dim])Maximum of elements in the input ignoring NaN's.
nanmean([dim])Arithmetic mean of elements in the input ignoring NaN's.
nanmedian([dim])Compute the median of the input values ignoring NaN's.
nanmin([dim])Minimum of elements in the input ignoring NaN's.
nanstd([dim])Compute the standard deviation of the input values ignoring NaN's.
nansum([dim])Sum of elements in the input ignoring NaN's.
nanvar([dim])Compute the variance of the input values ignoring NaN's.
plot(**kwargs)Wrapper function to plot data.
rebin([arg_dict])Rebin a data array or dataset.
rename([dims_dict])Rename the dimensions, coordinates, and attributes.
rename_dims([dims_dict])Rename dimensions.
round(*[, out])Round to the nearest integer of all values passed in x.
save_hdf5(filename)Write an object out to file in HDF5 format.
squeeze([dim])Remove dimensions of length 1.
std([dim])Compute the standard deviation of the input values.
sum([dim])Sum of elements in the input.
to(*[, unit, dtype, copy])Converts a Variable or DataArray to a different dtype and/or a different unit.
transform_coords([targets, graph, ...])Compute new coords based on transformations of input coords.
transpose([dims])Transpose dimensions of the input.
underlying_size(self)Return the size of the object in bytes.
var([dim])Compute the variance of the input values.
Attributes
binsReturns helper
scipp.Binsallowing bin-wise operations to be performed or None if not binned data.coordsDict of coords.
dataUnderlying data item.
dimThe only dimension label for 1-dimensional data, raising an exception if the data is not 1-dimensional.
dimsDimension labels of the data (read-only).
dtypeData type contained in the variable.
masksDict of masks.
nameThe name of the held data.
ndimNumber of dimensions of the data (read-only).
shapeShape of the data (read-only).
sizeNumber of elements in the data (read-only).
sizesdict mapping dimension labels to dimension sizes (read-only).
unitPhysical unit of the data.
valueThe only value for 0-dimensional data, raising an exception if the data is not 0-dimensional.
valuesArray of values of the data.
varianceThe only variance for 0-dimensional data, raising an exception if the data is not 0-dimensional.
variancesArray of variances of the data.