ess.reduce.nexus.types.Choppers#

class ess.reduce.nexus.types.Choppers(*args, **kwargs)[source]#

All choppers in a NeXus file.

__init__(*args, **kwargs)#

Methods

__init__(*args, **kwargs)

all([dim])

any([dim])

apply(func, *args, **kwargs)

Call func on all values and return new DataGroup containing the results.

astype(type, *[, copy])

bin([arg_dict])

broadcast(*[, dims, shape, sizes])

ceil()

clear()

copy([deep])

flatten([dims, to])

floor()

fold(dim, *[, dims, shape, sizes])

get(k[,d])

group(*args)

groupby(group, *[, bins])

hist([arg_dict])

items()

keys()

max([dim])

mean([dim])

median([dim])

min([dim])

nanhist([arg_dict])

nanmax([dim])

nanmean([dim])

nanmedian([dim])

nanmin([dim])

nanstd([dim])

nansum([dim])

nanvar([dim])

plot(*args, **kwargs)

pop(k[,d])

If key is not found, d is returned if given, otherwise KeyError is raised.

popitem()

as a 2-tuple; but raise KeyError if D is empty.

rebin([arg_dict])

rename([dims_dict])

rename_dims([dims_dict])

round()

save_hdf5(filename)

Write an object out to file in HDF5 format.

setdefault(k[,d])

squeeze([dim])

std([dim])

sum([dim])

to(*[, unit, dtype, copy])

transform_coords([targets, graph, ...])

transpose([dims])

underlying_size()

update([E, ]**F)

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

values()

var([dim])

Attributes

bins

dims

Union of dims of all items.

ndim

Number of dimensions, i.e., len(self.dims).

shape

Union of shape of all items.

sizes

Dict combining dims and shape, i.e., mapping dim labels to their size.