Indexing and Selecting#
Variable, DataArrays, and Datasets in Scipp can be “sliced” in several ways. The general way is positional indexing using indices as in NumPy. A second approach is to use label-based indexing which uses actual coordinate values for selection. Positional and label-based indexing returns view into the indexed object and can be used to modify an object in-place.
In addition, advanced indexing, which comprises integer array indexing and boolean variable indexing, can be used for more complex selections. Unlike the aforementioned basic positional and label-based indexing, indexing with integer arrays or boolean variables returns a copy of the indexed object.
Positional indexing#
Overview#
Data in a variable, data array, or dataset can be indexed in a similar manner to NumPy and xarray. The dimension to be sliced is specified using a dimension label. In contrast to NumPy, positional dimension lookup is not available, unless the object being sliced is one-dimensional. Positional indexing with an
integer or an integer range is made via __getitem__
and __setitem__
with a dimension label as first argument. This is available for variables, data arrays, and datasets. In all cases a view is returned, i.e., just like when slicing a numpy.ndarray no copy is performed.
Variables#
Consider the following variable:
[1]:
import numpy as np
import scipp as sc
var = sc.array(
dims=['z', 'y', 'x'],
values=np.random.rand(2, 3, 4),
variances=np.random.rand(2, 3, 4),
)
sc.show(var)
As when slicing a numpy.ndarray
, the dimension 'x'
is removed since no range is specified:
[2]:
s = var['x', 1]
sc.show(s)
print(s.dims, s.shape)
('z', 'y') (2, 3)
When a range is specified, the dimension is kept, even if it has extent 1:
[3]:
s = var['x', 1:3]
sc.show(s)
print(s.dims, s.shape)
s = var['x', 1:2]
sc.show(s)
print(s.dims, s.shape)
('z', 'y', 'x') (2, 3, 2)
('z', 'y', 'x') (2, 3, 1)
Slicing can be chained arbitrarily:
[4]:
s = var['x', 1:4]['y', 2]['x', 1]
sc.show(s)
print(s.dims, s.shape)
('z',) (2,)
The copy()
method turns a view obtained from a slice into an independent object:`
[5]:
s = var['x', 1:2].copy()
s += 1000
var
[5]:
- (z: 2, y: 3, x: 4)float64𝟙0.468, 0.421, ..., 0.541, 0.733σ = 0.737, 0.415, ..., 0.939, 0.273
Values:
array([[[0.46806619, 0.42140544, 0.36372336, 0.95049169], [0.8630797 , 0.14178032, 0.77544695, 0.55776587], [0.29117921, 0.63636983, 0.68157958, 0.47764621]], [[0.72700694, 0.73448241, 0.36453155, 0.74628244], [0.27106186, 0.48203382, 0.63780711, 0.72792218], [0.73208671, 0.49026703, 0.54124785, 0.73283671]]])
Variances (σ²):
array([[[0.54272193, 0.17204096, 0.55368429, 0.9369963 ], [0.41497655, 0.1756599 , 0.02287929, 0.39883252], [0.78935444, 0.58020186, 0.58569103, 0.88920583]], [[0.04589122, 0.3127363 , 0.44426761, 0.31249918], [0.0920609 , 0.82776653, 0.17665842, 0.13921596], [0.92627074, 0.69827586, 0.88126668, 0.07480064]]])
To avoid subtle and hard-to-spot bugs, positional indexing without dimension label is in general not supported:
[6]:
try:
var[1]
except sc.DimensionError as e:
print(e)
Slicing with implicit dimension label is only possible for 1-D objects. Got Sizes[z:2, y:3, x:4, ] with ndim=3. Provide an explicit dimension label, e.g., var['z', 0] instead of var[0].
Scipp makes an exception from this rule in the unambiguous case of 1-D objects:
[7]:
var1d = sc.linspace(dim='x', start=0.1, stop=0.2, num=5)
var1d[1]
[7]:
- ()float64𝟙0.125
Values:
array(0.125)
[8]:
var1d[2:4]
[8]:
- (x: 2)float64𝟙0.150, 0.175
Values:
array([0.15 , 0.175])
Positional index also supports an optional stride (step):
[9]:
var['x', 1:4:2]
[9]:
- (z: 2, y: 3, x: 2)float64𝟙0.421, 0.950, ..., 0.490, 0.733σ = 0.415, 0.968, ..., 0.836, 0.273
Values:
array([[[0.42140544, 0.95049169], [0.14178032, 0.55776587], [0.63636983, 0.47764621]], [[0.73448241, 0.74628244], [0.48203382, 0.72792218], [0.49026703, 0.73283671]]])
Variances (σ²):
array([[[0.17204096, 0.9369963 ], [0.1756599 , 0.39883252], [0.58020186, 0.88920583]], [[0.3127363 , 0.31249918], [0.82776653, 0.13921596], [0.69827586, 0.07480064]]])
Negative step sizes are current not supported.
Data arrays#
Slicing for data arrays works in the same way, but some additional rules apply. Consider:
[10]:
a = sc.DataArray(
data=sc.array(dims=['y', 'x'], values=np.random.rand(2, 3)),
coords={
'x': sc.array(dims=['x'], values=np.arange(3.0), unit='m'),
'y': sc.array(dims=['y'], values=np.arange(2.0), unit='m'),
},
masks={'mask': sc.array(dims=['x'], values=[True, False, False])},
)
sc.show(a)
a
[10]:
- y: 2
- x: 3
- x(x)float64m0.0, 1.0, 2.0
Values:
array([0., 1., 2.]) - y(y)float64m0.0, 1.0
Values:
array([0., 1.])
- (y, x)float64𝟙0.286, 0.725, ..., 0.182, 0.360
Values:
array([[0.28605357, 0.72464362, 0.20301422], [0.89736373, 0.18239506, 0.36014788]])
- mask(x)boolTrue, False, False
Values:
array([ True, False, False])
As when slicing a variable, the sliced dimension is removed when slicing without range, and kept when slicing with range.
When slicing a data array the following additional rule applies:
Meta data (coords, masks) that do not depend on the slice dimension are marked as readonly
Slicing without range:
The coordinates for the sliced dimension become unaligned.
Slicing with a range:
The coordinates for the sliced dimension keep their alignment.
The rationale behind this mechanism is as follows. Meta data is often of a lower dimensionality than data, such as in this example where coords and masks are 1-D whereas data is 2-D. Elements of meta data entries are thus shared by many data elements, and we must be careful to not apply operations to subsets of data while unintentionally modifying meta data for other unrelated data elements:
[11]:
a['x', 0:1].coords['x'] *= 2 # ok, modifies only coord value "private" to this x-slice
try:
# not ok, would modify coord value "shared" by all x-slices
a['x', 0:1].coords['y'] *= 2
except sc.VariableError as e:
print(
f'\'y\' is shared with other \'x\'-slices and should not be modified by the slice, so we get an error:\n{e}'
)
'y' is shared with other 'x'-slices and should not be modified by the slice, so we get an error:
Read-only flag is set, cannot mutate data.
In practice, a much more dangerous issue this mechanism protects from is unintentional changes to masks. Consider
[12]:
val = a['x', 1]['y', 1].copy()
val
[12]:
- x()float64m1.0
Values:
array(1.) - y()float64m1.0
Values:
array(1.)
- ()float64𝟙0.1823950575903679
Values:
array(0.18239506)
- mask()boolFalse
Values:
array(False)
If we now assign this scalar val
to a slice at y=0
, using =
we need to update the mask. However, the mask in this example depends only on x
so it also applies to the slices y=1
. If we would allow updating the mask, the following would unmask data for all y
:
[13]:
try:
a['y', 0] = val
except sc.DimensionError as e:
print(e)
Cannot update meta data 'mask' via slice since it is implicitly broadcast along the slice dimension 'y'.
Since we cannot update the mask in a consistent manner the entire operation fails. Data is not modified. The same mechanism is applied for binary arithmetic operations such as +=
where the masks would be updated using a logical OR operation.
The purpose for making coords unaligned when slicing without a range is to support useful operations such as:
[14]:
a - a['x', 1] # compute difference compared to data at x=1
[14]:
- y: 2
- x: 3
- x(x)float64m0.0, 1.0, 2.0
Values:
array([0., 1., 2.]) - y(y)float64m0.0, 1.0
Values:
array([0., 1.])
- (y, x)float64𝟙-0.439, 0.0, ..., 0.0, 0.178
Values:
array([[-0.43859005, 0. , -0.52162941], [ 0.71496867, 0. , 0.17775282]])
- mask(x)boolTrue, False, False
Values:
array([ True, False, False])
If the x
coord of a['x', 0]
were aligned, this would fail due to a coord mismatch. If coord checking is required, use a range-slice such as a['x', 1:2]
. Compare the two cases shown in the following and make sure to inspect the dims
and shape
of all variables (data and coordinates) of the resulting slices (note the tooltip shown when moving the mouse over the name also contains this information):
[15]:
sc.show(a['y', 1:2]) # Range of length 1
a['y', 1:2]
[15]:
- y: 1
- x: 3
- x(x)float64m0.0, 1.0, 2.0
Values:
array([0., 1., 2.]) - y(y)float64m1.0
Values:
array([1.])
- (y, x)float64𝟙0.897, 0.182, 0.360
Values:
array([[0.89736373, 0.18239506, 0.36014788]])
- mask(x)boolTrue, False, False
Values:
array([ True, False, False])
[16]:
sc.show(a['y', 1]) # No range
a['y', 1]
[16]:
- x: 3
- x(x)float64m0.0, 1.0, 2.0
Values:
array([0., 1., 2.]) - y()float64m1.0
Values:
array(1.)
- (x)float64𝟙0.897, 0.182, 0.360
Values:
array([0.89736373, 0.18239506, 0.36014788])
- mask(x)boolTrue, False, False
Values:
array([ True, False, False])
Datasets#
Slicing for datasets works just like for data arrays. In addition to making certain coords unaligned and marking certain meta data entries as read-only, slicing a dataset also marks lower-dimensional data entries readonly. Consider a dataset d
:
[17]:
d = sc.Dataset(
data={
'a': sc.array(dims=['y', 'x'], values=np.random.rand(2, 3)),
'b': sc.array(dims=['x', 'y'], values=np.random.rand(3, 2)),
},
coords={
'x': sc.array(dims=['x'], values=np.arange(3.0), unit='m'),
'y': sc.array(dims=['y'], values=np.arange(2.0), unit='m'),
},
)
sc.show(d)
and a slice of d
:
[18]:
sc.show(d['y', 0])
Slicing a data item of a dataset should not bring any surprises. Essentially this behaves like slicing a data array:
[19]:
sc.show(d['a']['x', 1:2])
Slicing and item access can be done in arbitrary order with identical results:
[20]:
assert sc.identical(d['x', 1:2]['a'], d['a']['x', 1:2])
assert sc.identical(d['x', 1:2]['a'].coords['x'], d.coords['x']['x', 1:2])
Label-based indexing#
Overview#
Data in a dataset or data array can be selected by the coordinate value. This is similar to pandas pandas.DataFrame.loc. Scipp leverages its ubiquitous support for physical units to provide label-based indexing in an intuitive manner, using the same syntax as positional indexing. For example:
array['x', 0:3]
selects positionally, i.e., returns the first three element along'x'
.array['x', 1.2*sc.Unit('m'):1.3*sc.Unit('m')]
selects by label, i.e., returns the elements along'x'
falling between1.2 m
and1.3 m
.
That is, label-based indexing is made via __getitem__
and __setitem__
with a dimension label as first argument and a scalar variable or a Python slice()
as created by the colon operator :
from two scalar variables. In all cases a view is returned, i.e., just like when slicing a numpy.ndarray no copy is performed.
Consider:
[21]:
da = sc.DataArray(
data=sc.array(dims=['year', 'x'], values=np.random.random((3, 7))),
coords={
'x': sc.array(dims=['x'], values=np.linspace(0.1, 0.9, num=7), unit='m'),
'year': sc.array(dims=['year'], values=[2020, 2023, 2027]),
},
)
sc.show(da)
da
[21]:
- year: 3
- x: 7
- x(x)float64m0.1, 0.233, ..., 0.767, 0.9
Values:
array([0.1 , 0.23333333, 0.36666667, 0.5 , 0.63333333, 0.76666667, 0.9 ]) - year(year)int64𝟙2020, 2023, 2027
Values:
array([2020, 2023, 2027])
- (year, x)float64𝟙0.853, 0.945, ..., 0.545, 0.574
Values:
array([[0.85264567, 0.94473395, 0.38431419, 0.69396647, 0.15559448, 0.47020307, 0.74035734], [0.4921794 , 0.06550194, 0.83637714, 0.64977234, 0.20003443, 0.43560802, 0.67449952], [0.79147296, 0.78558378, 0.10921494, 0.75585047, 0.83024332, 0.54459181, 0.57373851]])
We can select a slice of da
based on the 'year'
labels:
[22]:
year = sc.scalar(2023)
da['year', year]
[22]:
- x: 7
- x(x)float64m0.1, 0.233, ..., 0.767, 0.9
Values:
array([0.1 , 0.23333333, 0.36666667, 0.5 , 0.63333333, 0.76666667, 0.9 ]) - year()int64𝟙2023
Values:
array(2023)
- (x)float64𝟙0.492, 0.066, ..., 0.436, 0.674
Values:
array([0.4921794 , 0.06550194, 0.83637714, 0.64977234, 0.20003443, 0.43560802, 0.67449952])
In this case 2023
is the second element of the coordinate so this is equivalent to positionally slicing data['year', 1]
and the usual rules regarding dropping dimensions and making dimension coordinates unaligned apply:
[23]:
assert sc.identical(da['year', year], da['year', 1])
Warning
It is essential to not mix up integers and scalar Scipp variables containing an integer. As in above example, positional indexing yields different slices than label-based indexing.
Note
Here, we created year
using sc.scalar
. Alternatively, we could use year = 2023 * sc.units.dimensionless
which is useful for dimensionful coordinates like 'x'
in this case, see below.
For floating-point-valued coordinates selecting a single point would require an exact match, which is typically not feasible in practice. Scipp does not do fuzzy matching in this case, instead an IndexError
is raised:
[24]:
x = 0.23 * sc.Unit('m') # Equivalent of sc.scalar(0.23, unit='m')
try:
# No x coordinate value at this point.
da['x', x]
except IndexError as e:
print(str(e))
Coord x does not contain unique point with value <scipp.Variable> () float64 [m] 0.23
For such coordinates we may thus use an interval to select a range of values using the :
operator:
[25]:
x_left = 0.1 * sc.Unit('m')
x_right = 0.4 * sc.Unit('m')
da['x', x_left:x_right]
[25]:
- year: 3
- x: 3
- x(x)float64m0.1, 0.233, 0.367
Values:
array([0.1 , 0.23333333, 0.36666667]) - year(year)int64𝟙2020, 2023, 2027
Values:
array([2020, 2023, 2027])
- (year, x)float64𝟙0.853, 0.945, ..., 0.786, 0.109
Values:
array([[0.85264567, 0.94473395, 0.38431419], [0.4921794 , 0.06550194, 0.83637714], [0.79147296, 0.78558378, 0.10921494]])
The selection includes the bounds on the “left” but excludes the bounds on the “right”, i.e., we select the half-open interval \(x \in [x_{\text{left}},x_{\text{right}})\), closed on the left and open on the right.
The half-open interval implies that we can select consecutive intervals without including any data point in both intervals:
[26]:
x_mid = 0.2 * sc.Unit('m')
sc.to_html(da['x', x_left:x_mid])
sc.to_html(da['x', x_mid:x_right])
- year: 3
- x: 1
- x(x)float64m0.1
Values:
array([0.1]) - year(year)int64𝟙2020, 2023, 2027
Values:
array([2020, 2023, 2027])
- (year, x)float64𝟙0.853, 0.492, 0.791
Values:
array([[0.85264567], [0.4921794 ], [0.79147296]])
- year: 3
- x: 2
- x(x)float64m0.233, 0.367
Values:
array([0.23333333, 0.36666667]) - year(year)int64𝟙2020, 2023, 2027
Values:
array([2020, 2023, 2027])
- (year, x)float64𝟙0.945, 0.384, ..., 0.786, 0.109
Values:
array([[0.94473395, 0.38431419], [0.06550194, 0.83637714], [0.78558378, 0.10921494]])
Just like when slicing positionally one of the bounds can be omitted, to include either everything from the start, or everything until the end:
[27]:
da['x', :x_right]
[27]:
- year: 3
- x: 3
- x(x)float64m0.1, 0.233, 0.367
Values:
array([0.1 , 0.23333333, 0.36666667]) - year(year)int64𝟙2020, 2023, 2027
Values:
array([2020, 2023, 2027])
- (year, x)float64𝟙0.853, 0.945, ..., 0.786, 0.109
Values:
array([[0.85264567, 0.94473395, 0.38431419], [0.4921794 , 0.06550194, 0.83637714], [0.79147296, 0.78558378, 0.10921494]])
Coordinates used for label-based indexing must be monotonically ordered. While it is natural to think of slicing in terms of ascending coordinates, the slicing mechanism also works for descending coordinates.
Bin-edge coordinates#
Bin-edge coordinates are handled slightly differently from standard coordinates in label-based indexing. Consider:
[28]:
da = sc.DataArray(
data=sc.array(dims=['x'], values=np.random.random(7)),
coords={'x': sc.array(dims=['x'], values=np.linspace(1.0, 2.0, num=8), unit='m')},
)
da
[28]:
- x: 7
- x(x [bin-edge])float64m1.0, 1.143, ..., 1.857, 2.0
Values:
array([1. , 1.14285714, 1.28571429, 1.42857143, 1.57142857, 1.71428571, 1.85714286, 2. ])
- (x)float64𝟙0.379, 0.648, ..., 0.926, 0.944
Values:
array([0.378959 , 0.64843556, 0.61951484, 0.17600317, 0.89500845, 0.92560614, 0.94376839])
Here 'x'
is a bin-edge coordinate, i.e., its length exceeds the array dimensions by one. Label-based slicing with a single coord value finds and returns the bin that contains the given coord value:
[29]:
x = 1.5 * sc.Unit('m')
da['x', x]
[29]:
- x(x [bin-edge])float64m1.429, 1.571
Values:
array([1.42857143, 1.57142857])
- ()float64𝟙0.17600316880838318
Values:
array(0.17600317)
If an interval is provided when slicing with a bin-edge coordinate, the range of bins containing the values falling into the right-open interval bounds is selected:
[30]:
x_left = 1.3 * sc.Unit('m')
x_right = 1.7 * sc.Unit('m')
da['x', x_left:x_right]
[30]:
- x: 3
- x(x [bin-edge])float64m1.286, 1.429, 1.571, 1.714
Values:
array([1.28571429, 1.42857143, 1.57142857, 1.71428571])
- (x)float64𝟙0.620, 0.176, 0.895
Values:
array([0.61951484, 0.17600317, 0.89500845])
Limitations#
Label-based indexing not supported for:
Multi-dimensional coordinates.
Non-monotonic coordinates.
The first is a fundamental limitation since a slice cannot be defined in such as case. In the second case it would in general not be possible to return a view.
See also#
Note
When working with binned data, the bins
property supports a mechanism similar to label-based indexing, da.bins['param', param_value]
, returning a copy of the selected or filtered coordinate values of individual bin entries. See Rearranging and filtering binned data for details.
Advanced indexing#
Integer array indexing#
Indexing a variable, data array, or dataset with an integer array (instead of an integer or slice) returns a new variable, data array, or dataset including the elements with the elements at the selected positions.
This is identical to positional indexing except that multiple “positions” (but not ranges) can be specified at once, and a single object is returned.
Consider:
[31]:
import scipp as sc
var = sc.arange('dummy', 12).fold(dim='dummy', sizes={'x': 6, 'y': 2})
var
[31]:
- (x: 6, y: 2)int64𝟙0, 1, ..., 10, 11
Values:
array([[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7], [ 8, 9], [10, 11]])
Indexing with a list [1,2,5]
extracts the corresponding slices and return a single output object containing the specified slices:
[32]:
var['x', [1, 2, 5]]
[32]:
- (x: 3, y: 2)int64𝟙2, 3, ..., 10, 11
Values:
array([[ 2, 3], [ 4, 5], [10, 11]])
Note
By necessity — since the returned elements are generally non-contiguous — indexing with an integer array returns a copy of the input data. This is in contrast to positional indexing and label-based indexing which return a view.
Note that indexing with an index array always returns a copy, even if the selected elements form a contiguous range.
For 1-D objects the dimension label can be omitted:
[33]:
var1d = sc.linspace(dim='x', start=0.1, stop=0.2, num=5)
var1d[[3, 1, 3]]
[33]:
- (x: 3)float64𝟙0.175, 0.125, 0.175
Values:
array([0.175, 0.125, 0.175])
Boolean variable indexing#
Indexing a variable, data array, or dataset with a condition variable of dtype=bool
returns a new variable, data array, or dataset including the elements where the condition is True
.
The condition variable must be 1-D and must be compatible with the shape of the indexed object. Consider a 2-D variable:
[34]:
import scipp as sc
var = sc.arange('dummy', 12).fold(dim='dummy', sizes={'x': 6, 'y': 2})
var
[34]:
- (x: 6, y: 2)int64𝟙0, 1, ..., 10, 11
Values:
array([[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7], [ 8, 9], [10, 11]])
Indexing with a boolean variable corresponds to extracting rows or columns:
[35]:
condition = sc.array(dims=['x'], values=[True, False, False, True, False, False])
var[condition]
[35]:
- (x: 2, y: 2)int64𝟙0, 1, 6, 7
Values:
array([[0, 1], [6, 7]])
[36]:
condition = sc.array(dims=['y'], values=[False, True])
var[condition]
[36]:
- (x: 6, y: 1)int64𝟙1, 3, ..., 9, 11
Values:
array([[ 1], [ 3], [ 5], [ 7], [ 9], [11]])
Note
By necessity — since the returned elements are generally non-contiguous — indexing with a condition variable returns a copy of the input data. This is in contrast to positional indexing and label-based indexing which return a view.
Note that indexing with a condition variable always returns a copy, even if the selected elements form a contiguous range.
Given a multi-dimensional condition variable such as
[37]:
condition = var < 5
condition
[37]:
- (x: 6, y: 2)boolTrue, True, ..., False, False
Values:
array([[ True, True], [ True, True], [ True, False], [False, False], [False, False], [False, False]])
an indexing attempt will raise an error:
[38]:
var[condition]
---------------------------------------------------------------------------
DimensionError Traceback (most recent call last)
Cell In[38], line 1
----> 1 var[condition]
DimensionError: Condition must by 1-D, but got (x: 6, y: 2).
Unlike NumPy’s boolean array indexing Scipp does not support this, since it would require automatic flattening for the output, which is incompatible with Scipp’s philosophy of enforcing labeled dimensions. If such indexing is required, flatten by hand instead:
[39]:
var.flatten(to='elem')[condition.flatten(to='elem')]
[39]:
- (elem: 5)int64𝟙0, 1, 2, 3, 4
Values:
array([0, 1, 2, 3, 4])
When the index object has a bin-edge coordinate along the dimension being index, this coordinate is dropped from the output, since edges from non-adjacent bins are generally not compatible, i.e., we cannot define a sensible output coordinate:
[40]:
da = sc.DataArray(var)
da.coords['x'] = sc.arange('x', 7)
da.coords['x2'] = sc.arange('x', 6)
da
[40]:
- x: 6
- y: 2
- x(x [bin-edge])int64𝟙0, 1, ..., 5, 6
Values:
array([0, 1, 2, 3, 4, 5, 6]) - x2(x)int64𝟙0, 1, ..., 4, 5
Values:
array([0, 1, 2, 3, 4, 5])
- (x, y)int64𝟙0, 1, ..., 10, 11
Values:
array([[ 0, 1], [ 2, 3], [ 4, 5], [ 6, 7], [ 8, 9], [10, 11]])
[41]:
condition = sc.array(dims=['x'], values=[True, False, False, True, False, False])
da[condition]
[41]:
- x: 2
- y: 2
- x2(x)int64𝟙0, 3
Values:
array([0, 3])
- (x, y)int64𝟙0, 1, 6, 7
Values:
array([[0, 1], [6, 7]])