scipp.nanvar#
- scipp.nanvar(x, dim=None, *, ddof)#
Compute the variance of the input values ignoring NaN’s.
This function computes the variance of the input values which is not the same as the
x.variancesproperty but instead defined as\[\mathsf{nanvar}(x) = \frac1{N - \mathsf{ddof}} \sum_{i=1}^{N}\, {(x_i - \bar{x})}^2\]where \(x_i\) are the non-NaN
valuesof the input and \(\bar{x}\) is the mean, seescipp.nanmean(). See theddofparameter description for what value to choose.- Parameters:
x (
scipp.typing.VariableLike) – Input data.dim (
Union[str,Iterable[str],None], default:None) – Dimension(s) along which to calculate the variance. If not given, the variance over a flattened version of the array is calculated.ddof (
int) –‘Delta degrees of freedom’. For sample variances, set
ddof=1to obtain an unbiased estimator. For normally distributed variables, setddof=0to obtain a maximum likelihood estimate. Seenumpy.nanvar()for more details.In contrast to NumPy, this is a required parameter in Scipp to avoid potentially hard-to-find mistakes based on implicit assumptions about what the input data represents.
- Returns:
Same type as x– The variance of the non-NaN input values.- Raises:
scipp.VariancesError – If the input has variances.
scipp.DTypeError – If the input is binned or does otherwise not support computing variances.
ValueError – If the input has masks. Mask out NaN’s and then use
scipp.var()instead.
See also
scipp.nanmeanCompute the arithmetic mean ignoring NaN’s.
scipp.nanstdCompute the standard deviation, ignoring NaN’s.
scipp.varCompute the variance without special handling of NaN’s.
Examples
nanvaris available as a method:>>> x = sc.array(dims=['x'], values=[np.nan, 5, 2, 3]) >>> x.nanvar(ddof=0) <scipp.Variable> () float64 [dimensionless] 1.55556 >>> x.nanvar(ddof=1) <scipp.Variable> () float64 [dimensionless] 2.33333