scipp.array#
- scipp.array(*, dims, values, variances=None, unit=<automatically deduced unit>, dtype=None)#
Constructs a
Variable
with given dimensions, containing given values and optional variances.Dimension and value shape must match. Only keyword arguments accepted.
- Parameters:
dims (Iterable[str]) – Dimension labels
values (
numpy.typing.ArrayLike
) – Initial values.variances (
numpy.typing.ArrayLike
) – Initial variances, must be same shape and size as values.unit (Unit | str | DefaultUnit | None, default:
<automatically deduced unit>
) – Unit of contents.dtype (
scipp.typing.DTypeLike
) – Type of underlying data. By default, inferred from values argument.
- Returns:
Variable – A variable with the given values.
See also
Examples
>>> sc.array(dims=['x'], values=[1, 2, 3]) <scipp.Variable> (x: 3) int64 [dimensionless] [1, 2, 3]
Multiple dimensions:
>>> sc.array(dims=['x', 'y'], values=[[1, 2, 3], [4, 5, 6]]) <scipp.Variable> (x: 2, y: 3) int64 [dimensionless] [1, 2, ..., 5, 6]
DType upcasting:
>>> sc.array(dims=['x'], values=[1, 2, 3.0]) <scipp.Variable> (x: 3) float64 [dimensionless] [1, 2, 3]
Manually specified dtype:
>>> sc.array(dims=['x'], values=[1, 2, 3], dtype=float) <scipp.Variable> (x: 3) float64 [dimensionless] [1, 2, 3]
Set unit:
>>> sc.array(dims=['x'], values=[1, 2, 3], unit='m') <scipp.Variable> (x: 3) int64 [m] [1, 2, 3]
Setting variances:
>>> sc.array(dims=['x'], values=[1.0, 2.0, 3.0], variances=[0.1, 0.2, 0.3]) <scipp.Variable> (x: 3) float64 [dimensionless] [1, 2, 3] [0.1, 0.2, 0.3]