ess.reflectometry.batch_processor#
- ess.reflectometry.batch_processor(workflow, runs)[source]#
Creates a collection of sciline workflows from the provided runs.
Example:
from ess.reflectometry import amor, tools workflow = amor.AmorWorkflow() runs = { '608': { SampleRotationOffset[SampleRun]: sc.scalar(0.05, unit='deg'), Filename[SampleRun]: "file_608.hdf", }, '609': { SampleRotationOffset[SampleRun]: sc.scalar(0.05, unit='deg'), Filename[SampleRun]: "file_609.hdf", }, '610': { SampleRotationOffset[SampleRun]: sc.scalar(0.05, unit='deg'), Filename[SampleRun]: "file_610.hdf", }, '611': { SampleRotationOffset[SampleRun]: sc.scalar(0.05, unit='deg'), Filename[SampleRun]: "file_611.hdf", }, } batch = tools.batch_processor(workflow, runs) results = batch.compute(ReflectivityOverQ)
Additionally, if a list of filenames is provided for
Filename[SampleRun], the events from the files will be concatenated into a single event list before processing.Example:
runs = { '608': { Filename[SampleRun]: "file_608.hdf", }, '609+610': { Filename[SampleRun]: ["file_609.hdf", "file_610.hdf"], }, }
- Parameters:
workflow (
Pipeline) – The sciline workflow used to compute the targets for each of the runs.runs (
Mapping[Any,Mapping[type,Any]]) – The sciline parameters to be used for each run. Should be a mapping where the keys are the names of the runs and the values are mappings of type to value pairs. In addition, if one of the values forFilename[SampleRun]is a list or a tuple, then the events from the files will be concatenated into a single event list.
- Return type: