Scaling#

MTZ IO#

ess.nmx has MTZ IO helper functions. They can be used as providers in a workflow of scaling routine.

They are wrapping MTZ IO functions of gemmi.

[1]:
%matplotlib inline
[2]:
import gemmi
from ess.nmx.mtz_io import (
    read_mtz_file,
    mtz_to_pandas,
    MTZFilePath,
    get_unique_space_group,
    MtzDataFrame,
    merge_mtz_dataframes,
)
from ess.nmx.data import get_small_random_mtz_samples


small_mtz_sample = get_small_random_mtz_samples()[0]
mtz = read_mtz_file(MTZFilePath(small_mtz_sample))
df = mtz_to_pandas(mtz)
df.head()
Downloading file 'mtz_random_samples.tar.gz' from 'https://public.esss.dk/groups/scipp/ess/nmx/mtz_random_samples.tar.gz' to '/home/runner/.cache/essnmx/0'.
Untarring contents of '/home/runner/.cache/essnmx/0/mtz_random_samples.tar.gz' to '/home/runner/.cache/essnmx/0/mtz_random_samples.tar.gz.untar'
[2]:
I SIGI LAMBDA H K L
0 124.962219 16.215948 3.199984 34.0 99.0 0.0
1 120.856743 14.550026 3.199915 -25.0 -24.0 71.0
2 119.300064 13.047421 3.199908 52.0 -84.0 63.0
3 117.497627 16.257229 3.199904 -36.0 93.0 18.0
4 114.670326 11.597502 3.199864 -96.0 51.0 -47.0

Build Pipeline#

Scaling routine includes:

  • Reducing individual MTZ dataset

  • Merging MTZ dataset

  • Reducing merged MTZ dataset

These operations are done on pandas dataframe as recommended in gemmi. And multiple MTZ files are expected, so we need to use sciline.ParamTable.

[3]:
import pandas as pd
import sciline as sl
import scipp as sc

from ess.nmx.mtz_io import providers as mtz_io_providers, default_parameters as mtz_io_params
from ess.nmx.mtz_io import SpaceGroupDesc
from ess.nmx.scaling import providers as scaling_providers, default_parameters as scaling_params
from ess.nmx.scaling import (
    WavelengthBins,
    FilteredEstimatedScaledIntensities,
    ReferenceWavelength,
    ScaledIntensityLeftTailThreshold,
    ScaledIntensityRightTailThreshold,
)

pl = sl.Pipeline(
    providers=mtz_io_providers + scaling_providers,
    params={
        SpaceGroupDesc: "C 1 2 1",
        ReferenceWavelength: sc.scalar(
            3, unit=sc.units.angstrom
        ),  # Remove it if you want to use the middle of the bin
        ScaledIntensityLeftTailThreshold: sc.scalar(
            0.1,  # Increase it to remove more outliers
        ),
        ScaledIntensityRightTailThreshold: sc.scalar(
            4.0,  # Decrease it to remove more outliers
        ),
        **mtz_io_params,
        **scaling_params,
        WavelengthBins: 250,
    },
)
pl
[3]:
Name Value Source
EstimatedScaleFactor
estimate_scale_factor_per_hkl_asu_from_reference ess.nmx.scaling.estimate_scale_factor_per_hkl_asu_from_reference
EstimatedScaledIntensities
average_roughly_scaled_intensities ess.nmx.scaling.average_roughly_scaled_intensities
FilteredEstimatedScaledIntensities
cut_tails ess.nmx.scaling.cut_tails
FittingResult
fit_wavelength_scale_factor_polynomial ess.nmx.scaling.fit_wavelength_scale_factor_polynomial
IntensityColumnName I
MTZFilePath
Mtz
read_mtz_file ess.nmx.mtz_io.read_mtz_file
MtzDataFrame
process_single_mtz_to_dataframe ess.nmx.mtz_io.process_single_mtz_to_dataframe
NMXMtzDataArray
nmx_mtz_dataframe_to_scipp_dataarray ess.nmx.mtz_io.nmx_mtz_dataframe_to_scipp_dataarray
NMXMtzDataFrame
process_mtz_dataframe ess.nmx.mtz_io.process_mtz_dataframe
ReciprocalAsu
get_reciprocal_asu ess.nmx.mtz_io.get_reciprocal_asu
ReferenceIntensities
get_reference_intensities ess.nmx.scaling.get_reference_intensities
ReferenceWavelength
<scipp.Variable> () ... <scipp.Variable> () int64 [Å] 3
ScaledIntensityLeftTailThreshold
<scipp.Variable> () f... <scipp.Variable> () float64 [dimensionless] 0.1
ScaledIntensityRightTailThreshold
<scipp.Variable> () f... <scipp.Variable> () float64 [dimensionless] 2
SelectedReferenceWavelength
get_reference_wavelength ess.nmx.scaling.get_reference_wavelength
SpaceGroup
SpaceGroup | NoneType
get_space_group_from_mtz ess.nmx.mtz_io.get_space_group_from_mtz
SpaceGroupDesc C 1 2 1
StdDevColumnName SIGI
WavelengthBinned
get_wavelength_binned ess.nmx.scaling.get_wavelength_binned
WavelengthBins 250
WavelengthColumnName LAMBDA
WavelengthFittingPolynomialDegree 7
WavelengthScaleFactors
calculate_wavelength_scale_factor ess.nmx.scaling.calculate_wavelength_scale_factor
[4]:
file_paths = pd.DataFrame({MTZFilePath: get_small_random_mtz_samples()}).rename_axis(
    "mtzfile"
)
mapped = pl.map(file_paths)
pl[gemmi.SpaceGroup] = mapped[gemmi.SpaceGroup | None].reduce(
    index='mtzfile', func=get_unique_space_group
)
pl[MtzDataFrame] = mapped[MtzDataFrame].reduce(
    index='mtzfile', func=merge_mtz_dataframes
)

Build Workflow#

[5]:
from ess.nmx.scaling import WavelengthScaleFactors

scaling_nmx_workflow = pl.get(WavelengthScaleFactors)
scaling_nmx_workflow.visualize(graph_attr={"rankdir": "LR"})
[5]:
../_images/user-guide_scaling_workflow_7_0.svg

Compute Desired Type#

[6]:
from ess.nmx.scaling import (
    SelectedReferenceWavelength,
    FittingResult,
    WavelengthScaleFactors,
)

results = scaling_nmx_workflow.compute(
    (
        FilteredEstimatedScaledIntensities,
        SelectedReferenceWavelength,
        FittingResult,
        WavelengthScaleFactors,
    )
)

results[WavelengthScaleFactors]
[6]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (4.70 KB)
    • wavelength: 247
    • wavelength
      (wavelength)
      float64
      Å
      2.801, 2.804, ..., 3.194, 3.196
      Values:
      array([2.80126774, 2.80446398, 2.80606211, 2.80766023, 2.80925835, 2.81085647, 2.81245459, 2.81405271, 2.81565083, 2.81724895, 2.81884707, 2.82044519, 2.82204331, 2.82364143, 2.82523955, 2.82683767, 2.8284358 , 2.83003392, 2.83163204, 2.83323016, 2.83482828, 2.8364264 , 2.83802452, 2.83962264, 2.84122076, 2.84281888, 2.844417 , 2.84601512, 2.84761324, 2.84921136, 2.85080948, 2.85240761, 2.85400573, 2.85560385, 2.85720197, 2.85880009, 2.86039821, 2.86199633, 2.86359445, 2.86519257, 2.86679069, 2.86838881, 2.86998693, 2.87158505, 2.87318317, 2.8747813 , 2.87637942, 2.87797754, 2.87957566, 2.88117378, 2.8827719 , 2.88437002, 2.88596814, 2.88756626, 2.88916438, 2.8907625 , 2.89236062, 2.89395874, 2.89555686, 2.89715498, 2.89875311, 2.90035123, 2.90194935, 2.90354747, 2.90514559, 2.90674371, 2.90834183, 2.90993995, 2.91153807, 2.91313619, 2.91473431, 2.91633243, 2.91793055, 2.91952867, 2.9211268 , 2.92272492, 2.92432304, 2.92592116, 2.92751928, 2.9291174 , 2.93071552, 2.93231364, 2.93391176, 2.93550988, 2.937108 , 2.93870612, 2.94030424, 2.94190236, 2.94350048, 2.94509861, 2.94669673, 2.94829485, 2.94989297, 2.95149109, 2.95308921, 2.95468733, 2.95628545, 2.95788357, 2.95948169, 2.96107981, 2.96267793, 2.96427605, 2.96587417, 2.9674723 , 2.96907042, 2.97066854, 2.97226666, 2.97386478, 2.9754629 , 2.97706102, 2.97865914, 2.98025726, 2.98185538, 2.9834535 , 2.98505162, 2.98664974, 2.98824786, 2.98984598, 2.99144411, 2.99304223, 2.99464035, 2.99623847, 2.99783659, 2.99943471, 3.00103283, 3.00263095, 3.00422907, 3.00582719, 3.00742531, 3.00902343, 3.01062155, 3.01221967, 3.0138178 , 3.01541592, 3.01701404, 3.01861216, 3.02021028, 3.0218084 , 3.02340652, 3.02500464, 3.02660276, 3.02820088, 3.029799 , 3.03139712, 3.03299524, 3.03459336, 3.03619148, 3.03778961, 3.03938773, 3.04098585, 3.04258397, 3.04418209, 3.04578021, 3.04737833, 3.04897645, 3.05057457, 3.05217269, 3.05377081, 3.05536893, 3.05696705, 3.05856517, 3.0601633 , 3.06176142, 3.06335954, 3.06495766, 3.06655578, 3.0681539 , 3.06975202, 3.07135014, 3.07294826, 3.07454638, 3.0761445 , 3.07774262, 3.07934074, 3.08093886, 3.08253698, 3.08413511, 3.08573323, 3.08733135, 3.08892947, 3.09052759, 3.09212571, 3.09372383, 3.09532195, 3.09692007, 3.09851819, 3.10011631, 3.10171443, 3.10331255, 3.10491067, 3.1065088 , 3.10810692, 3.10970504, 3.11130316, 3.11290128, 3.1144994 , 3.11609752, 3.11769564, 3.11929376, 3.12089188, 3.12249 , 3.12408812, 3.12568624, 3.12728436, 3.12888248, 3.13048061, 3.13207873, 3.13367685, 3.13527497, 3.13687309, 3.13847121, 3.14006933, 3.14166745, 3.14326557, 3.14486369, 3.14646181, 3.14805993, 3.14965805, 3.15125617, 3.1528543 , 3.15445242, 3.15605054, 3.15764866, 3.15924678, 3.1608449 , 3.16244302, 3.16404114, 3.16563926, 3.16723738, 3.1688355 , 3.17043362, 3.17203174, 3.17362986, 3.17522798, 3.17682611, 3.17842423, 3.18002235, 3.18162047, 3.18321859, 3.18481671, 3.18641483, 3.18801295, 3.18961107, 3.19120919, 3.19280731, 3.19440543, 3.19600355])
    • (wavelength)
      float64
      𝟙
      0.113, 0.158, ..., 1.841, 1.863
      Values:
      array([0.11293644, 0.15786471, 0.17927499, 0.20000795, 0.22008209, 0.23951563, 0.25832648, 0.27653223, 0.29415019, 0.31119733, 0.32769036, 0.34364567, 0.35907935, 0.37400721, 0.38844477, 0.40240726, 0.4159096 , 0.42896648, 0.44159225, 0.45380101, 0.4656066 , 0.47702255, 0.48806214, 0.49873837, 0.50906399, 0.51905147, 0.52871301, 0.53806057, 0.54710585, 0.55586028, 0.56433505, 0.5725411 , 0.5804891 , 0.58818952, 0.59565253, 0.60288811, 0.60990598, 0.61671561, 0.62332626, 0.62974696, 0.63598648, 0.6420534 , 0.64795606, 0.65370259, 0.65930087, 0.66475861, 0.67008326, 0.6752821 , 0.68036218, 0.68533034, 0.69019323, 0.69495728, 0.69962874, 0.70421366, 0.70871789, 0.71314708, 0.71750672, 0.72180208, 0.72603828, 0.73022023, 0.73435268, 0.73844019, 0.74248715, 0.7464978 , 0.75047617, 0.75442617, 0.75835151, 0.76225577, 0.76614234, 0.77001448, 0.77387528, 0.7777277 , 0.78157452, 0.78541841, 0.78926188, 0.7931073 , 0.7969569 , 0.80081278, 0.80467692, 0.80855114, 0.81243716, 0.81633656, 0.82025081, 0.82418126, 0.82812914, 0.83209556, 0.83608152, 0.84008793, 0.84411558, 0.84816514, 0.85223722, 0.85633229, 0.86045076, 0.86459293, 0.86875901, 0.87294912, 0.87716331, 0.88140154, 0.88566369, 0.88994956, 0.89425889, 0.89859134, 0.9029465 , 0.9073239 , 0.91172301, 0.91614323, 0.92058391, 0.92504434, 0.92952378, 0.93402141, 0.93853638, 0.9430678 , 0.94761474, 0.95217621, 0.95675123, 0.96133874, 0.96593767, 0.97054694, 0.97516542, 0.97979198, 0.98442546, 0.98906468, 0.99370847, 0.99835562, 1.00300493, 1.00765521, 1.01230524, 1.01695382, 1.02159975, 1.02624184, 1.0308789 , 1.03550978, 1.0401333 , 1.04474835, 1.04935381, 1.05394859, 1.05853163, 1.06310191, 1.06765843, 1.07220022, 1.07672637, 1.081236 , 1.08572828, 1.09020242, 1.09465769, 1.0990934 , 1.10350893, 1.10790372, 1.11227727, 1.11662913, 1.12095895, 1.12526641, 1.12955131, 1.13381349, 1.13805289, 1.14226953, 1.14646352, 1.15063504, 1.15478438, 1.15891193, 1.16301816, 1.16710365, 1.17116909, 1.17521527, 1.1792431 , 1.18325357, 1.18724784, 1.19122714, 1.19519285, 1.19914647, 1.20308963, 1.20702408, 1.21095171, 1.21487455, 1.21879478, 1.22271471, 1.22663679, 1.23056364, 1.23449802, 1.23844286, 1.24240122, 1.24637634, 1.25037164, 1.25439068, 1.25843722, 1.26251516, 1.2666286 , 1.27078183, 1.27497931, 1.27922567, 1.28352576, 1.28788462, 1.29230746, 1.29679972, 1.30136702, 1.30601521, 1.31075032, 1.31557861, 1.32050655, 1.32554084, 1.33068839, 1.33595632, 1.34135201, 1.34688306, 1.35255729, 1.35838276, 1.3643678 , 1.37052095, 1.37685101, 1.38336703, 1.39007831, 1.39699442, 1.40412517, 1.41148066, 1.41907122, 1.42690748, 1.43500034, 1.44336096, 1.45200079, 1.46093156, 1.4701653 , 1.4797143 , 1.48959117, 1.49980881, 1.51038041, 1.52131946, 1.53263978, 1.54435546, 1.55648095, 1.56903097, 1.58202059, 1.59546519, 1.60938047, 1.62378248, 1.63868758, 1.65411248, 1.67007421, 1.68659017, 1.70367808, 1.72135603, 1.73964245, 1.75855613, 1.77811621, 1.7983422 , 1.81925398, 1.8408718 , 1.86321627])

Plots#

Here are plotting examples of the fitting/estimation results.

Estimated Scaled Intensities.#

[7]:
import scipy.stats as stats
import matplotlib.pyplot as plt

fig, (density_ax, prob_ax) = plt.subplots(1, 2, figsize=(10, 5))

densities = sc.values(results[FilteredEstimatedScaledIntensities].data).values
sc.values(results[FilteredEstimatedScaledIntensities].data).hist(intensity=50).plot(
    title="Filtered Estimated Scaled Intensities\nDensity Plot",
    grid=True,
    linewidth=3,
    ax=density_ax,
)
stats.probplot(densities, dist="norm", plot=prob_ax)
prob_ax.set_title("Filtered Estimated Scaled Intensities\nProbability Plot")
[7]:
Text(0.5, 1.0, 'Filtered Estimated Scaled Intensities\nProbability Plot')
../_images/user-guide_scaling_workflow_11_1.png

Curve Fitting#

[8]:
import plopp as pp
import numpy as np
from ess.nmx.scaling import FittingResult

chebyshev_func = np.polynomial.chebyshev.Chebyshev(np.array([1, -1, 1]))
scale_function = np.vectorize(
    chebyshev_func / chebyshev_func(results[SelectedReferenceWavelength].value)
)
pp.plot(
    {
        "Original Data": results[FilteredEstimatedScaledIntensities],
        "Fit Result": results[FittingResult].fit_output,
    },
    grid=True,
    title="Fit Result [Intensities vs Wavelength]",
    marker={"Chebyshev": None, "Fit Result": None},
    linestyle={"Chebyshev": "solid", "Fit Result": "solid"},
)
[8]:
../_images/user-guide_scaling_workflow_13_0.svg
[9]:
reference_wavelength = sc.DataArray(
    data=sc.concat(
        [
            results[WavelengthScaleFactors].data.min(),
            results[WavelengthScaleFactors].data.max(),
        ],
        "wavelength",
    ),
    coords={
        "wavelength": sc.broadcast(
            results[SelectedReferenceWavelength], dims=["wavelength"], shape=[2]
        )
    },
)
wavelength_scale_factor_plot = pp.plot(
    {
        "scale_factor": results[WavelengthScaleFactors],
        "reference_wavelength": reference_wavelength,
    },
    title="Wavelength Scale Factors",
    grid=True,
    marker={"reference_wavelength": None},
    linestyle={"reference_wavelength": "solid"},
)
wavelength_scale_factor_plot.ax.set_xlim(2.8, 3.2)
reference_wavelength = results[SelectedReferenceWavelength].value
wavelength_scale_factor_plot.ax.text(
    3.0,
    0.25,
    f"{reference_wavelength=:} [{results[SelectedReferenceWavelength].unit}]",
    fontsize=8,
    color="black",
)
wavelength_scale_factor_plot
[9]:
../_images/user-guide_scaling_workflow_14_0.svg

Change Provider#

Here is an example of how to insert different filter function.

In this example, we will swap a provider that filters EstimatedScaledIntensities and provide FilteredEstimatedScaledIntensities.

After updating the providers, you can go back to Compute Desired Type and start over.

[10]:
from typing import NewType
import scipp as sc
from ess.nmx.scaling import (
    EstimatedScaledIntensities,
    FilteredEstimatedScaledIntensities,
)

# Define the new types for the filtering function
NRoot = NewType("NRoot", int)
"""The n-th root to be taken for the standard deviation."""
NRootStdDevCut = NewType("NRootStdDevCut", float)
"""The number of standard deviations to be cut from the n-th root data."""


def _calculate_sample_standard_deviation(var: sc.Variable) -> sc.Variable:
    """Calculate the sample variation of the data.

    This helper function is a temporary solution before
    we release new scipp version with the statistics helper.
    """
    import numpy as np

    return sc.scalar(np.nanstd(var.values))


# Define the filtering function with right argument types and return type
def cut_estimated_scaled_intensities_by_n_root_std_dev(
    scaled_intensities: EstimatedScaledIntensities,
    n_root: NRoot,
    n_root_std_dev_cut: NRootStdDevCut,
) -> FilteredEstimatedScaledIntensities:
    """Filter the mtz data array by the quad root of the sample standard deviation.

    Parameters
    ----------
    scaled_intensities:
        The scaled intensities to be filtered.

    n_root:
        The n-th root to be taken for the standard deviation.
        Higher n-th root means cutting is more effective on the right tail.
        More explanation can be found in the notes.

    n_root_std_dev_cut:
        The number of standard deviations to be cut from the n-th root data.

    Returns
    -------
    :
        The filtered scaled intensities.

    """
    # Check the range of the n-th root
    if n_root < 1:
        raise ValueError("The n-th root should be equal to or greater than 1.")

    copied = scaled_intensities.copy(deep=False)
    nth_root = copied.data ** (1 / n_root)
    # Calculate the mean
    nth_root_mean = nth_root.nanmean()
    # Calculate the sample standard deviation
    nth_root_std_dev = _calculate_sample_standard_deviation(nth_root)
    # Calculate the cut value
    half_window = n_root_std_dev_cut * nth_root_std_dev
    keep_range = (nth_root_mean - half_window, nth_root_mean + half_window)

    # Filter the data
    return FilteredEstimatedScaledIntensities(
        copied[(nth_root > keep_range[0]) & (nth_root < keep_range[1])]
    )


pl.insert(cut_estimated_scaled_intensities_by_n_root_std_dev)
pl[NRoot] = 4
pl[NRootStdDevCut] = 1.0

pl.compute(FilteredEstimatedScaledIntensities)
[10]:
Show/Hide data repr Show/Hide attributes
scipp.DataArray (5.06 KB)
    • wavelength: 180
    • wavelength
      (wavelength)
      float64
      Å
      2.857, 2.859, ..., 3.143, 3.145
      Values:
      array([2.85720197, 2.85880009, 2.86199633, 2.86359445, 2.86519257, 2.86679069, 2.86838881, 2.86998693, 2.87158505, 2.87318317, 2.8747813 , 2.87637942, 2.87797754, 2.87957566, 2.88117378, 2.8827719 , 2.88437002, 2.88596814, 2.88756626, 2.88916438, 2.8907625 , 2.89236062, 2.89395874, 2.89555686, 2.89715498, 2.89875311, 2.90035123, 2.90194935, 2.90354747, 2.90514559, 2.90674371, 2.90834183, 2.90993995, 2.91153807, 2.91313619, 2.91473431, 2.91633243, 2.91793055, 2.91952867, 2.9211268 , 2.92272492, 2.92432304, 2.92592116, 2.92751928, 2.9291174 , 2.93071552, 2.93231364, 2.93391176, 2.93550988, 2.937108 , 2.93870612, 2.94030424, 2.94190236, 2.94350048, 2.94509861, 2.94669673, 2.94829485, 2.94989297, 2.95149109, 2.95308921, 2.95468733, 2.95628545, 2.95788357, 2.95948169, 2.96107981, 2.96267793, 2.96427605, 2.96587417, 2.9674723 , 2.96907042, 2.97066854, 2.97226666, 2.97386478, 2.9754629 , 2.97706102, 2.97865914, 2.98025726, 2.98185538, 2.9834535 , 2.98505162, 2.98664974, 2.98824786, 2.98984598, 2.99144411, 2.99304223, 2.99464035, 2.99623847, 2.99783659, 2.99943471, 3.00103283, 3.00263095, 3.00422907, 3.00582719, 3.00742531, 3.00902343, 3.01062155, 3.01221967, 3.0138178 , 3.01541592, 3.01701404, 3.01861216, 3.02021028, 3.0218084 , 3.02340652, 3.02500464, 3.02660276, 3.02820088, 3.029799 , 3.03139712, 3.03299524, 3.03459336, 3.03619148, 3.03778961, 3.03938773, 3.04098585, 3.04258397, 3.04418209, 3.04578021, 3.04737833, 3.04897645, 3.05057457, 3.05217269, 3.05377081, 3.05536893, 3.05696705, 3.05856517, 3.0601633 , 3.06176142, 3.06335954, 3.06495766, 3.06655578, 3.0681539 , 3.06975202, 3.07135014, 3.07294826, 3.07454638, 3.0761445 , 3.07774262, 3.07934074, 3.08093886, 3.08253698, 3.08413511, 3.08573323, 3.08733135, 3.08892947, 3.09052759, 3.09212571, 3.09372383, 3.09532195, 3.09692007, 3.09851819, 3.10011631, 3.10171443, 3.10331255, 3.10491067, 3.1065088 , 3.10810692, 3.10970504, 3.11130316, 3.11290128, 3.1144994 , 3.11609752, 3.11769564, 3.11929376, 3.12089188, 3.12249 , 3.12408812, 3.12568624, 3.12728436, 3.12888248, 3.13048061, 3.13207873, 3.13367685, 3.13527497, 3.13687309, 3.13847121, 3.14006933, 3.14166745, 3.14326557, 3.14486369])
    • (wavelength)
      float64
      𝟙
      0.607, 0.635, ..., 1.426, 1.433
      σ = 0.008, 0.010, ..., 0.016, 0.016
      Values:
      array([0.60701136, 0.63543251, 0.61014797, 0.60687841, 0.64063341, 0.64477855, 0.63060851, 0.6354285 , 0.63241668, 0.6801704 , 0.64791815, 0.65241405, 0.67176579, 0.66216388, 0.67983785, 0.76573685, 0.6897617 , 0.69497858, 0.68923385, 0.69421855, 0.71312324, 0.71762069, 0.71924796, 0.71350834, 0.73973755, 0.73987078, 0.73091883, 0.76524373, 0.78709439, 0.75940385, 0.7531101 , 0.75556798, 0.7649094 , 0.80252712, 0.77212538, 0.78140896, 0.78655757, 0.80898602, 0.79107113, 0.80424133, 0.81415732, 0.80318773, 0.82257562, 0.82421577, 0.81914805, 0.83883417, 0.82893376, 0.83124682, 0.83585803, 0.83850146, 0.84103569, 0.84695262, 0.85688075, 0.86945677, 0.85906804, 0.9218925 , 0.86914816, 0.91045699, 0.88111809, 0.91048742, 0.9135022 , 0.92319082, 0.9091663 , 0.94769961, 0.91789943, 0.90172197, 0.91641999, 1.00243711, 0.92708451, 0.92340422, 0.94519391, 0.958041 , 0.95741827, 0.94907516, 0.96260363, 0.94877115, 0.95156596, 0.99797824, 0.98314835, 0.96406614, 0.98796071, 0.97131976, 0.97809237, 1.0047737 , 0.98358337, 0.98823764, 0.99075758, 1.01890895, 1.00002533, 1.00280132, 1.01720885, 1.02456602, 1.02862338, 1.04339159, 1.11048209, 1.02642898, 1.03125943, 1.05767551, 1.03819415, 1.06594585, 1.0475024 , 1.05550821, 1.05997372, 1.06479941, 1.10447633, 1.07160543, 1.08583605, 1.10037271, 1.07918654, 1.096032 , 1.09064145, 1.14224181, 1.14131522, 1.1131383 , 1.11509902, 1.14921045, 1.14752224, 1.15394375, 1.13732574, 1.12480986, 1.13199338, 1.1355053 , 1.14498709, 1.15131283, 1.16019585, 1.14926851, 1.20596178, 1.19317325, 1.20938738, 1.17243895, 1.18824331, 1.2029705 , 1.24170481, 1.19589819, 1.19257404, 1.21140305, 1.20021868, 1.21995624, 1.20940748, 1.256482 , 1.21893929, 1.22344128, 1.26310797, 1.25332745, 1.24698495, 1.24481521, 1.27492469, 1.25980644, 1.25842109, 1.26101988, 1.26799712, 1.28305818, 1.27821921, 1.28031813, 1.2984795 , 1.29552409, 1.30833405, 1.37305781, 1.3077331 , 1.35069681, 1.31686891, 1.37084274, 1.34994883, 1.36527644, 1.34026168, 1.36052391, 1.37756447, 1.36338963, 1.38524905, 1.36879148, 1.38171194, 1.38826252, 1.38789918, 1.40076755, 1.41014075, 1.43422107, 1.43542983, 1.43605585, 1.42629685, 1.43292886])

      Variances (σ²):
      array([5.74795388e-05, 9.93314364e-05, 3.98175406e-05, 5.14143117e-05, 6.59856884e-05, 6.35042274e-05, 5.12313977e-05, 5.03618029e-05, 5.48519377e-05, 6.64681424e-05, 5.44289193e-05, 5.28388613e-05, 6.18483531e-05, 6.49031775e-05, 5.17519600e-05, 1.58387702e-04, 5.97465988e-05, 6.94945851e-05, 6.17728263e-05, 6.55613101e-05, 6.64384083e-05, 6.10811798e-05, 6.79638741e-05, 6.27376788e-05, 6.04419593e-05, 5.94244647e-05, 6.86752165e-05, 6.63347564e-05, 1.16998465e-04, 7.06466281e-05, 7.18489677e-05, 6.07973663e-05, 6.64159835e-05, 9.21256233e-05, 7.51157075e-05, 7.64880785e-05, 7.49804098e-05, 8.41489392e-05, 8.22133027e-05, 8.44401545e-05, 8.60130996e-05, 8.42609198e-05, 9.90535932e-05, 8.61488066e-05, 8.50271382e-05, 8.76785252e-05, 8.34146837e-05, 7.02328085e-05, 1.00364941e-04, 9.05520394e-05, 9.42670424e-05, 9.19481589e-05, 9.79183486e-05, 9.65009092e-05, 8.78656880e-05, 1.20414926e-04, 9.97904008e-05, 1.23560947e-04, 9.40254289e-05, 1.04686854e-04, 1.14489579e-04, 1.22188220e-04, 1.13109919e-04, 1.28414724e-04, 1.25353117e-04, 1.21911209e-04, 9.33227901e-05, 1.74027431e-04, 1.04913489e-04, 1.25347383e-04, 1.10791537e-04, 1.26701847e-04, 1.09050282e-04, 1.24742060e-04, 1.30781863e-04, 1.05761382e-04, 1.11854640e-04, 1.41779497e-04, 1.31608731e-04, 1.30743276e-04, 1.20826420e-04, 1.26319151e-04, 1.34927236e-04, 1.38158530e-04, 1.27356091e-04, 1.19864312e-04, 1.11187810e-04, 1.48789152e-04, 1.01213931e-04, 1.20698080e-04, 1.43554691e-04, 1.38697908e-04, 1.25700611e-04, 1.37931585e-04, 1.61406860e-04, 1.37677380e-04, 1.58749289e-04, 1.38160188e-04, 1.55284500e-04, 1.42545751e-04, 1.27560210e-04, 1.42550483e-04, 1.49925713e-04, 1.52065118e-04, 1.55441427e-04, 1.23287290e-04, 1.55261442e-04, 1.44539525e-04, 1.24982438e-04, 1.57909050e-04, 1.49287766e-04, 2.06205310e-04, 1.90313201e-04, 1.77068448e-04, 1.71384686e-04, 1.79194967e-04, 1.81565258e-04, 1.82234209e-04, 1.63582868e-04, 1.53892338e-04, 1.61651550e-04, 1.55816162e-04, 1.77663538e-04, 1.43336109e-04, 1.79886967e-04, 1.44532259e-04, 2.15440507e-04, 1.78006524e-04, 1.68227794e-04, 1.43395734e-04, 1.68639373e-04, 2.08071896e-04, 2.88074238e-04, 1.69707896e-04, 2.09134167e-04, 1.68616751e-04, 1.68781981e-04, 1.89460765e-04, 1.70585735e-04, 2.13972053e-04, 1.83197052e-04, 1.77821792e-04, 2.12173908e-04, 1.94450779e-04, 2.00403246e-04, 2.15643301e-04, 1.80441688e-04, 2.11129070e-04, 2.12913190e-04, 2.02940199e-04, 1.92602365e-04, 1.97268100e-04, 2.11366868e-04, 2.23142283e-04, 2.23695021e-04, 1.99477666e-04, 2.05906838e-04, 2.75295912e-04, 2.21289923e-04, 2.34401372e-04, 2.12831768e-04, 2.33427866e-04, 2.35852820e-04, 2.32453124e-04, 2.25265472e-04, 2.60025287e-04, 2.28782691e-04, 2.31453403e-04, 2.34481505e-04, 2.85590814e-04, 3.04085898e-04, 2.48227948e-04, 2.44201201e-04, 2.40701814e-04, 2.76635060e-04, 2.38082663e-04, 2.61419961e-04, 2.59264576e-04, 2.41191106e-04, 2.51345766e-04])