Download this Jupyter notebook
Visualizing and reducing WFM imaging data with Scipp¶
How to start¶
Before starting you must:
Have conda installed
conda env create -f ess-notebooks-stable.yml python=3.7
. The yaml environment file is part of this repository.fetch the data
git clone git@github.com:scipp/ess-notebooks-data.git
somewhere localGenerate the
dataconfig.py
file usingmake_config.py
located in same directory as this notebook. In general, you simply need to pointmake_config.py
to the root directory of data you cloned above. Refer to the helpmake_config.py --help
for more information.
Experimental Summary¶
This script has been developed to measure local strain \(\varepsilon\) defined as \(\varepsilon = \Delta L/L_{0}\) in a FCC steel sample under elastic strain in a stress rig. The measurements were measured at V20, HZB, Berlin, in September 2018 by Peter Kadletz.
\(\lambda = 2 d \sin\theta\), where \(2\theta = \pi\) (transmission), edges characterise the Bragg condition and hence \(\lambda = 2 d\). Therefore strain is easily computed from the wavelength measurement of a Bragg edge directly, using un-loaded vs loaded experimental runs (and reference mesurements).
The known Miller indices of the crystal structure (FCC) are used to predict the wavelength of the Bragg edges, which is bound by the reachable wavelength extents of the instrument. This provides an approximate region to apply a fit. A complement error function is used to fit each Bragg edge, and a refined centre location (\(\lambda\)) for the edge is used in the strain measurement. Because each Bragg edge can be identified individually, one can determine anisotropic strain across the unit cell in the reachable crystallographic directions.
Setup¶
[1]:
import numpy as np
import matplotlib.pyplot as plt
plt.ioff()
import scipp as sc
import scippneutron as sn
from scipp import plot
import os
import sys
import ess.v20.imaging as imaging
import ess.wfm as wfm
import dataconfig
local_data_path = os.path.join('ess-notebooks', 'v20', 'imaging',
'gp2-stress-experiments')
data_dir = os.path.join(dataconfig.data_root, local_data_path)
instrument_file = os.path.join(data_dir, 'V20_Definition_GP2.xml')
tofs_path = os.path.join(data_dir, 'GP2_Stress_time_values.txt')
raw_data_dir = os.path.join(data_dir)
[2]:
def load_component_info(file, advanced_geometry=False):
instrument = sn.load(filename=file,
mantid_alg='LoadEmptyInstrument',
mantid_args={'StoreInADS': False})
geometry = {key: value for key, value in instrument.coords.items()}
# Assume the detector is square
npix = int(np.sqrt(instrument.sizes["spectrum"]))
geometry["position"] = sc.fold(geometry["position"],
dim='spectrum', dims=['y', 'x'], shape=[npix, npix])
geometry["x"] = geometry["position"].fields.x['y', 0]
geometry["y"] = geometry["position"].fields.y['x', 0]
del geometry["spectrum"]
del geometry["empty"]
return geometry
Reduction¶
Load the data files and instrument geometry¶
[3]:
def load_and_scale(folder_name, scale_factor):
to_load = os.path.join(raw_data_dir, folder_name)
variable = imaging.tiffs_to_variable(to_load, dtype=np.float32, with_variances=False)
variable *= scale_factor
return variable
[4]:
# Number of pulses for each run, to scale data according to integration times
pulse_number_reference = 1.0 / 770956
pulse_number_sample = 1.0 / 1280381
pulse_number_sample_elastic = 1.0 / 2416839
# Create Dataset
ds = sc.Dataset()
# Load tiff stack
ds["reference"] = load_and_scale(folder_name="R825-open-beam",
scale_factor=pulse_number_reference)
ds["sample"] = load_and_scale(folder_name="R825",
scale_factor=pulse_number_sample)
ds["sample_elastic"] = load_and_scale(folder_name="R825-600-Mpa",
scale_factor=pulse_number_sample_elastic)
# Load time bins from 1D text file
ds.coords["t"] = sc.array(
dims=["t"],
unit=sc.units.us,
values=imaging.read_x_values(tofs_path,
skiprows=1,
usecols=1,
delimiter='\t') * 1.0e3)
# Instrument geometry
geometry = load_component_info(instrument_file)
for key, val in geometry.items():
ds.coords[key] = val
# Chopper cascade
beamline = imaging.make_beamline()
ds.coords['choppers'] = sc.scalar(beamline["choppers"])
for key, value in beamline["source"].items():
ds.coords[key] = value
[5]:
ds
[5]:
- t: 1001
- y: 324
- x: 324
- choppers()PyObject{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30342bd510>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f303ca60cd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f303ca60d10>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3036f28450>}
Values:
{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30342bd510>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f303ca60cd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f303ca60d10>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3036f28450>} - position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -25.3]
Values:
array([ 0. , 0. , -25.3]) - source_pulse_length()float64µs2860.0
Values:
array(2860.) - source_pulse_t_0()float64µs140.0
Values:
array(140.) - t(t [bin-edge])float64µs15.0, 74.94, ..., 59955.06, 60015.0
Values:
array([1.50000000e+01, 7.49400600e+01, 1.34880120e+02, ..., 5.98951199e+04, 5.99550599e+04, 6.00150000e+04]) - x(x)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02]) - y(y)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02])
- reference(t, y, x)float32counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 1.2970909e-06], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.2970909e-06, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [1.2970909e-06, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.2970909e-06, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 1.2970909e-06, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], ..., [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]]], dtype=float32) - sample(t, y, x)float32counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 7.8101755e-07], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 7.8101755e-07, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 1.5620351e-06, 0.0000000e+00, ..., 0.0000000e+00, 7.8101755e-07, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 7.8101755e-07], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 7.8101755e-07, 0.0000000e+00, 0.0000000e+00]], ..., [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], [[0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], ..., [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00], [0.0000000e+00, 0.0000000e+00, 0.0000000e+00, ..., 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]]], dtype=float32) - sample_elastic(t, y, x)float32counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00]], [[0.000000e+00, 4.137636e-07, 0.000000e+00, ..., 0.000000e+00, 4.137636e-07, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 4.137636e-07, 0.000000e+00, 0.000000e+00], [0.000000e+00, 4.137636e-07, 4.137636e-07, ..., 0.000000e+00, 4.137636e-07, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 4.137636e-07, 0.000000e+00, 0.000000e+00]], [[0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [4.137636e-07, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00]], ..., [[0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00]], [[0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00]], [[0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], ..., [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00], [0.000000e+00, 0.000000e+00, 0.000000e+00, ..., 0.000000e+00, 0.000000e+00, 0.000000e+00]]], dtype=float32)
Raw data visualization¶
[6]:
plot(ds["sample"]['t', 600:], norm='log') # Slice at 600 gets us to an interesting t value
Converting time coordinate to TOF¶
Use the instrument geometry and chopper cascade parameters to compute time-distance diagram.
[7]:
frames = wfm.get_frames(ds)
frames
[7]:
- frame: 6
- y: 324
- x: 324
- delta_time_max(frame)float64µs436.11, 607.14, ..., 1050.0, 1178.57
Values:
array([ 436.11111111, 607.14285714, 765.87301587, 913.0952381 , 1050. , 1178.57142857]) - delta_time_min(frame)float64µs252.48, 436.47, ..., 912.88, 1051.19
Values:
array([ 252.48316498, 436.47186147, 607.22703223, 765.6024531 , 912.87878788, 1051.19047619]) - delta_wavelength_max(frame, y, x)float64Å0.09, 0.09, ..., 0.24, 0.24
Values:
array([[[0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ], [0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ], [0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ], ..., [0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ], [0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ], [0.0905624 , 0.0905624 , 0.0905624 , ..., 0.0905624 , 0.0905624 , 0.0905624 ]], [[0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868], [0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868], [0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868], ..., [0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868], [0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868], [0.12607868, 0.12607868, 0.12607868, ..., 0.12607868, 0.12607868, 0.12607868]], [[0.15904042, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904042], [0.15904043, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904043], [0.15904043, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904043], ..., [0.15904043, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904043], [0.15904043, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904043], [0.15904042, 0.15904043, 0.15904043, ..., 0.15904043, 0.15904043, 0.15904042]], [[0.18961244, 0.18961244, 0.18961245, ..., 0.18961245, 0.18961244, 0.18961244], [0.18961244, 0.18961245, 0.18961245, ..., 0.18961245, 0.18961245, 0.18961244], [0.18961245, 0.18961245, 0.18961245, ..., 0.18961245, 0.18961245, 0.18961245], ..., [0.18961245, 0.18961245, 0.18961245, ..., 0.18961245, 0.18961245, 0.18961245], [0.18961244, 0.18961245, 0.18961245, ..., 0.18961245, 0.18961245, 0.18961244], [0.18961244, 0.18961244, 0.18961245, ..., 0.18961245, 0.18961244, 0.18961244]], [[0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195], [0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195], [0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195], ..., [0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195], [0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195], [0.21804195, 0.21804195, 0.21804195, ..., 0.21804195, 0.21804195, 0.21804195]], [[0.24474096, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474096], [0.24474097, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474097], [0.24474097, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474097], ..., [0.24474097, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474097], [0.24474097, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474097], [0.24474096, 0.24474097, 0.24474097, ..., 0.24474097, 0.24474097, 0.24474096]]]) - delta_wavelength_min(frame, y, x)float64Å0.05, 0.05, ..., 0.22, 0.22
Values:
array([[[0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ], [0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ], [0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ], ..., [0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ], [0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ], [0.0524304 , 0.0524304 , 0.0524304 , ..., 0.0524304 , 0.0524304 , 0.0524304 ]], [[0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731], [0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731], [0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731], ..., [0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731], [0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731], [0.09063731, 0.09063731, 0.09063731, ..., 0.09063731, 0.09063731, 0.09063731]], [[0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616], [0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616], [0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616], ..., [0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616], [0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616], [0.12609616, 0.12609616, 0.12609616, ..., 0.12609616, 0.12609616, 0.12609616]], [[0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424], [0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424], [0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424], ..., [0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424], [0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424], [0.15898424, 0.15898424, 0.15898424, ..., 0.15898424, 0.15898424, 0.15898424]], [[0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ], [0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ], [0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ], ..., [0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ], [0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ], [0.1895675 , 0.1895675 , 0.1895675 , ..., 0.1895675 , 0.1895675 , 0.1895675 ]], [[0.21828916, 0.21828916, 0.21828916, ..., 0.21828916, 0.21828916, 0.21828916], [0.21828916, 0.21828916, 0.21828916, ..., 0.21828916, 0.21828916, 0.21828916], [0.21828916, 0.21828916, 0.21828917, ..., 0.21828917, 0.21828916, 0.21828916], ..., [0.21828916, 0.21828916, 0.21828917, ..., 0.21828917, 0.21828916, 0.21828916], [0.21828916, 0.21828916, 0.21828916, ..., 0.21828916, 0.21828916, 0.21828916], [0.21828916, 0.21828916, 0.21828916, ..., 0.21828916, 0.21828916, 0.21828916]]]) - time_correction(frame)float64µs6222.22, 8645.24, ..., 14940.08, 16749.21
Values:
array([ 6222.22222222, 8645.23809524, 10898.41269841, 12993.25396825, 14940.07936508, 16749.20634921]) - time_max(frame, y, x)float64µs23056.55, 23056.55, ..., 62243.26, 62243.26
Values:
array([[[23056.55307365, 23056.55303753, 23056.55300163, ..., 23056.55300163, 23056.55303753, 23056.55307365], [23056.55303753, 23056.55300141, 23056.55296552, ..., 23056.55296552, 23056.55300141, 23056.55303753], [23056.55300163, 23056.55296552, 23056.55292962, ..., 23056.55292962, 23056.55296552, 23056.55300163], ..., [23056.55300163, 23056.55296552, 23056.55292962, ..., 23056.55292962, 23056.55296552, 23056.55300163], [23056.55303753, 23056.55300141, 23056.55296552, ..., 23056.55296552, 23056.55300141, 23056.55303753], [23056.55307365, 23056.55303753, 23056.55300163, ..., 23056.55300163, 23056.55303753, 23056.55307365]], [[32081.56767002, 32081.56761973, 32081.56756976, ..., 32081.56756976, 32081.56761973, 32081.56767002], [32081.56761973, 32081.56756945, 32081.56751948, ..., 32081.56751948, 32081.56756945, 32081.56761973], [32081.56756976, 32081.56751948, 32081.5674695 , ..., 32081.5674695 , 32081.56751948, 32081.56756976], ..., [32081.56756976, 32081.56751948, 32081.5674695 , ..., 32081.5674695 , 32081.56751948, 32081.56756976], [32081.56761973, 32081.56756945, 32081.56751948, ..., 32081.56751948, 32081.56756945, 32081.56761973], [32081.56767002, 32081.56761973, 32081.56756976, ..., 32081.56756976, 32081.56761973, 32081.56767002]], [[40461.88726006, 40461.88719663, 40461.8871336 , ..., 40461.8871336 , 40461.88719663, 40461.88726006], [40461.88719663, 40461.8871332 , 40461.88707016, ..., 40461.88707016, 40461.8871332 , 40461.88719663], [40461.8871336 , 40461.88707016, 40461.88700713, ..., 40461.88700713, 40461.88707016, 40461.8871336 ], ..., [40461.8871336 , 40461.88707016, 40461.88700713, ..., 40461.88700713, 40461.88707016, 40461.8871336 ], [40461.88719663, 40461.8871332 , 40461.88707016, ..., 40461.88707016, 40461.8871332 , 40461.88719663], [40461.88726006, 40461.88719663, 40461.8871336 , ..., 40461.8871336 , 40461.88719663, 40461.88726006]], [[48239.65550523, 48239.6554296 , 48239.65535445, ..., 48239.65535445, 48239.6554296 , 48239.65550523], [48239.6554296 , 48239.65535398, 48239.65527882, ..., 48239.65527882, 48239.65535398, 48239.6554296 ], [48239.65535445, 48239.65527882, 48239.65520367, ..., 48239.65520367, 48239.65527882, 48239.65535445], ..., [48239.65535445, 48239.65527882, 48239.65520367, ..., 48239.65520367, 48239.65527882, 48239.65535445], [48239.6554296 , 48239.65535398, 48239.65527882, ..., 48239.65527882, 48239.65535398, 48239.6554296 ], [48239.65550523, 48239.6554296 , 48239.65535445, ..., 48239.65535445, 48239.6554296 , 48239.65550523]], [[55471.14345323, 55471.14336627, 55471.14327984, ..., 55471.14327984, 55471.14336627, 55471.14345323], [55471.14336627, 55471.1432793 , 55471.14319288, ..., 55471.14319288, 55471.1432793 , 55471.14336627], [55471.14327984, 55471.14319288, 55471.14310646, ..., 55471.14310646, 55471.14319288, 55471.14327984], ..., [55471.14327984, 55471.14319288, 55471.14310646, ..., 55471.14310646, 55471.14319288, 55471.14327984], [55471.14336627, 55471.1432793 , 55471.14319288, ..., 55471.14319288, 55471.1432793 , 55471.14336627], [55471.14345323, 55471.14336627, 55471.14327984, ..., 55471.14327984, 55471.14336627, 55471.14345323]], [[62243.25787672, 62243.25777911, 62243.2576821 , ..., 62243.2576821 , 62243.25777911, 62243.25787672], [62243.25777911, 62243.2576815 , 62243.25758449, ..., 62243.25758449, 62243.2576815 , 62243.25777911], [62243.2576821 , 62243.25758449, 62243.25748749, ..., 62243.25748749, 62243.25758449, 62243.2576821 ], ..., [62243.2576821 , 62243.25758449, 62243.25748749, ..., 62243.25748749, 62243.25758449, 62243.2576821 ], [62243.25777911, 62243.2576815 , 62243.25758449, ..., 62243.25758449, 62243.2576815 , 62243.25777911], [62243.25787672, 62243.25777911, 62243.2576821 , ..., 62243.2576821 , 62243.25777911, 62243.25787672]]]) - time_min(frame, y, x)float64µs15715.85, 15715.85, ..., 56275.03, 56275.03
Values:
array([[[15715.84509639, 15715.84507548, 15715.8450547 , ..., 15715.8450547 , 15715.84507548, 15715.84509639], [15715.84507548, 15715.84505457, 15715.84503379, ..., 15715.84503379, 15715.84505457, 15715.84507548], [15715.8450547 , 15715.84503379, 15715.84501301, ..., 15715.84501301, 15715.84503379, 15715.8450547 ], ..., [15715.8450547 , 15715.84503379, 15715.84501301, ..., 15715.84501301, 15715.84503379, 15715.8450547 ], [15715.84507548, 15715.84505457, 15715.84503379, ..., 15715.84503379, 15715.84505457, 15715.84507548], [15715.84509639, 15715.84507548, 15715.8450547 , ..., 15715.8450547 , 15715.84507548, 15715.84509639]], [[25057.02241471, 25057.02237856, 25057.02234263, ..., 25057.02234263, 25057.02237856, 25057.02241471], [25057.02237856, 25057.02234241, 25057.02230649, ..., 25057.02230649, 25057.02234241, 25057.02237856], [25057.02234263, 25057.02230649, 25057.02227056, ..., 25057.02227056, 25057.02230649, 25057.02234263], ..., [25057.02234263, 25057.02230649, 25057.02227056, ..., 25057.02227056, 25057.02230649, 25057.02234263], [25057.02237856, 25057.02234241, 25057.02230649, ..., 25057.02230649, 25057.02234241, 25057.02237856], [25057.02241471, 25057.02237856, 25057.02234263, ..., 25057.02234263, 25057.02237856, 25057.02241471]], [[33730.76448452, 33730.76443423, 33730.76438425, ..., 33730.76438425, 33730.76443423, 33730.76448452], [33730.76443423, 33730.76438394, 33730.76433396, ..., 33730.76433396, 33730.76438394, 33730.76443423], [33730.76438425, 33730.76433396, 33730.76428398, ..., 33730.76428398, 33730.76433396, 33730.76438425], ..., [33730.76438425, 33730.76433396, 33730.76428398, ..., 33730.76428398, 33730.76433396, 33730.76438425], [33730.76443423, 33730.76438394, 33730.76433396, ..., 33730.76433396, 33730.76438394, 33730.76443423], [33730.76448452, 33730.76443423, 33730.76438425, ..., 33730.76438425, 33730.76443423, 33730.76448452]], [[41780.68207967, 41780.68201626, 41780.68195324, ..., 41780.68195324, 41780.68201626, 41780.68207967], [41780.68201626, 41780.68195285, 41780.68188983, ..., 41780.68188983, 41780.68195285, 41780.68201626], [41780.68195324, 41780.68188983, 41780.68182682, ..., 41780.68182682, 41780.68188983, 41780.68195324], ..., [41780.68195324, 41780.68188983, 41780.68182682, ..., 41780.68182682, 41780.68188983, 41780.68195324], [41780.68201626, 41780.68195285, 41780.68188983, ..., 41780.68188983, 41780.68195285, 41780.68201626], [41780.68207967, 41780.68201626, 41780.68195324, ..., 41780.68195324, 41780.68201626, 41780.68207967]], [[49265.24691647, 49265.24684086, 49265.24676572, ..., 49265.24676572, 49265.24684086, 49265.24691647], [49265.24684086, 49265.24676525, 49265.24669012, ..., 49265.24669012, 49265.24676525, 49265.24684086], [49265.24676572, 49265.24669012, 49265.24661498, ..., 49265.24661498, 49265.24669012, 49265.24676572], ..., [49265.24676572, 49265.24669012, 49265.24661498, ..., 49265.24661498, 49265.24669012, 49265.24676572], [49265.24684086, 49265.24676525, 49265.24669012, ..., 49265.24669012, 49265.24676525, 49265.24684086], [49265.24691647, 49265.24684086, 49265.24676572, ..., 49265.24676572, 49265.24684086, 49265.24691647]], [[56275.03354857, 56275.03346151, 56275.03337499, ..., 56275.03337499, 56275.03346151, 56275.03354857], [56275.03346151, 56275.03337444, 56275.03328792, ..., 56275.03328792, 56275.03337444, 56275.03346151], [56275.03337499, 56275.03328792, 56275.0332014 , ..., 56275.0332014 , 56275.03328792, 56275.03337499], ..., [56275.03337499, 56275.03328792, 56275.0332014 , ..., 56275.0332014 , 56275.03328792, 56275.03337499], [56275.03346151, 56275.03337444, 56275.03328792, ..., 56275.03328792, 56275.03337444, 56275.03346151], [56275.03354857, 56275.03346151, 56275.03337499, ..., 56275.03337499, 56275.03346151, 56275.03354857]]]) - wavelength_max(frame, y, x)float64Å3.45, 3.45, ..., 9.32, 9.32
Values:
array([[[3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912], [3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912], [3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912], ..., [3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912], [3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912], [3.45051912, 3.45051912, 3.45051912, ..., 3.45051912, 3.45051912, 3.45051912]], [[4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543], [4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543], [4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543], ..., [4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543], [4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543], [4.80372543, 4.80372543, 4.80372543, ..., 4.80372543, 4.80372543, 4.80372543]], [[6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136], [6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136], [6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136], ..., [6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136], [6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136], [6.05960136, 6.05960136, 6.05960136, ..., 6.05960136, 6.05960136, 6.05960136]], [[7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628], [7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628], [7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628], ..., [7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628], [7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628], [7.22442628, 7.22442628, 7.22442628, ..., 7.22442628, 7.22442628, 7.22442628]], [[8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927], [8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927], [8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927], ..., [8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927], [8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927], [8.30761927, 8.30761927, 8.30761927, ..., 8.30761927, 8.30761927, 8.30761927]], [[9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878], [9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878], [9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878], ..., [9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878], [9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878], [9.32487878, 9.32487878, 9.32487878, ..., 9.32487878, 9.32487878, 9.32487878]]]) - wavelength_min(frame, y, x)float64Å2.0, 2.0, ..., 8.32, 8.32
Values:
array([[[1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144], [1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144], [1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144], ..., [1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144], [1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144], [1.99765144, 1.99765144, 1.99765144, ..., 1.99765144, 1.99765144, 1.99765144]], [[3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338], [3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338], [3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338], ..., [3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338], [3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338], [3.45337338, 3.45337338, 3.45337338, ..., 3.45337338, 3.45337338, 3.45337338]], [[4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143], [4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143], [4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143], ..., [4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143], [4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143], [4.80439143, 4.80439143, 4.80439143, ..., 4.80439143, 4.80439143, 4.80439143]], [[6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066], [6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066], [6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066], ..., [6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066], [6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066], [6.05746066, 6.05746066, 6.05746066, ..., 6.05746066, 6.05746066, 6.05746066]], [[7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373], [7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373], [7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373], ..., [7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373], [7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373], [7.22271373, 7.22271373, 7.22271373, ..., 7.22271373, 7.22271373, 7.22271373]], [[8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834], [8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834], [8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834], ..., [8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834], [8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834], [8.31703834, 8.31703834, 8.31703834, ..., 8.31703834, 8.31703834, 8.31703834]]]) - wfm_chopper_mid_point()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45])
[8]:
wfm.plot.time_distance_diagram(ds)
[8]:
The wfm.plot
provides another helper function to inspect the individual frames on a spectrum of integrated counts:
[9]:
wfm.plot.frames_before_stitching(data=ds['reference'], frames=frames, dim='t')
We then use the wfm.stitch
function to convert the time dimension to time-of-flight (see here for more details on working with WFM data). The contributions from each frame are automatically rebinned onto a single time-of-flight axis.
[10]:
stitched = wfm.stitch(data=ds, dim="t", frames=frames)
stitched
[10]:
- tof: 256
- y: 324
- x: 324
- choppers()PyObject{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f302c321390>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f302c321d10>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f302c321d50>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f302c321e10>}
Values:
{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f302c321390>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f302c321d10>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f302c321d50>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f302c321e10>} - position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45]) - source_pulse_length()float64µs2860.0
Values:
array(2860.) - source_pulse_t_0()float64µs140.0
Values:
array(140.) - tof(tof [bin-edge])float64µs9493.62, 9634.25, ..., 45353.41, 45494.04
Values:
array([ 9493.62062274, 9634.24726491, 9774.87390708, 9915.50054924, 10056.12719141, 10196.75383358, 10337.38047575, 10478.00711792, 10618.63376009, 10759.26040226, 10899.88704443, 11040.5136866 , 11181.14032877, 11321.76697093, 11462.3936131 , 11603.02025527, 11743.64689744, 11884.27353961, 12024.90018178, 12165.52682395, 12306.15346612, 12446.78010829, 12587.40675046, 12728.03339262, 12868.66003479, 13009.28667696, 13149.91331913, 13290.5399613 , 13431.16660347, 13571.79324564, 13712.41988781, 13853.04652998, 13993.67317215, 14134.29981431, 14274.92645648, 14415.55309865, 14556.17974082, 14696.80638299, 14837.43302516, 14978.05966733, 15118.6863095 , 15259.31295167, 15399.93959384, 15540.566236 , 15681.19287817, 15821.81952034, 15962.44616251, 16103.07280468, 16243.69944685, 16384.32608902, 16524.95273119, 16665.57937336, 16806.20601553, 16946.83265769, 17087.45929986, 17228.08594203, 17368.7125842 , 17509.33922637, 17649.96586854, 17790.59251071, 17931.21915288, 18071.84579505, 18212.47243722, 18353.09907938, 18493.72572155, 18634.35236372, 18774.97900589, 18915.60564806, 19056.23229023, 19196.8589324 , 19337.48557457, 19478.11221674, 19618.73885891, 19759.36550107, 19899.99214324, 20040.61878541, 20181.24542758, 20321.87206975, 20462.49871192, 20603.12535409, 20743.75199626, 20884.37863843, 21025.0052806 , 21165.63192276, 21306.25856493, 21446.8852071 , 21587.51184927, 21728.13849144, 21868.76513361, 22009.39177578, 22150.01841795, 22290.64506012, 22431.27170229, 22571.89834445, 22712.52498662, 22853.15162879, 22993.77827096, 23134.40491313, 23275.0315553 , 23415.65819747, 23556.28483964, 23696.91148181, 23837.53812398, 23978.16476614, 24118.79140831, 24259.41805048, 24400.04469265, 24540.67133482, 24681.29797699, 24821.92461916, 24962.55126133, 25103.1779035 , 25243.80454567, 25384.43118783, 25525.05783 , 25665.68447217, 25806.31111434, 25946.93775651, 26087.56439868, 26228.19104085, 26368.81768302, 26509.44432519, 26650.07096736, 26790.69760952, 26931.32425169, 27071.95089386, 27212.57753603, 27353.2041782 , 27493.83082037, 27634.45746254, 27775.08410471, 27915.71074688, 28056.33738905, 28196.96403121, 28337.59067338, 28478.21731555, 28618.84395772, 28759.47059989, 28900.09724206, 29040.72388423, 29181.3505264 , 29321.97716857, 29462.60381074, 29603.2304529 , 29743.85709507, 29884.48373724, 30025.11037941, 30165.73702158, 30306.36366375, 30446.99030592, 30587.61694809, 30728.24359026, 30868.87023243, 31009.49687459, 31150.12351676, 31290.75015893, 31431.3768011 , 31572.00344327, 31712.63008544, 31853.25672761, 31993.88336978, 32134.51001195, 32275.13665412, 32415.76329628, 32556.38993845, 32697.01658062, 32837.64322279, 32978.26986496, 33118.89650713, 33259.5231493 , 33400.14979147, 33540.77643364, 33681.40307581, 33822.02971797, 33962.65636014, 34103.28300231, 34243.90964448, 34384.53628665, 34525.16292882, 34665.78957099, 34806.41621316, 34947.04285533, 35087.6694975 , 35228.29613966, 35368.92278183, 35509.549424 , 35650.17606617, 35790.80270834, 35931.42935051, 36072.05599268, 36212.68263485, 36353.30927702, 36493.93591919, 36634.56256135, 36775.18920352, 36915.81584569, 37056.44248786, 37197.06913003, 37337.6957722 , 37478.32241437, 37618.94905654, 37759.57569871, 37900.20234088, 38040.82898304, 38181.45562521, 38322.08226738, 38462.70890955, 38603.33555172, 38743.96219389, 38884.58883606, 39025.21547823, 39165.8421204 , 39306.46876257, 39447.09540473, 39587.7220469 , 39728.34868907, 39868.97533124, 40009.60197341, 40150.22861558, 40290.85525775, 40431.48189992, 40572.10854209, 40712.73518426, 40853.36182642, 40993.98846859, 41134.61511076, 41275.24175293, 41415.8683951 , 41556.49503727, 41697.12167944, 41837.74832161, 41978.37496378, 42119.00160594, 42259.62824811, 42400.25489028, 42540.88153245, 42681.50817462, 42822.13481679, 42962.76145896, 43103.38810113, 43244.0147433 , 43384.64138547, 43525.26802764, 43665.8946698 , 43806.52131197, 43947.14795414, 44087.77459631, 44228.40123848, 44369.02788065, 44509.65452282, 44650.28116499, 44790.90780716, 44931.53444932, 45072.16109149, 45212.78773366, 45353.41437583, 45494.041018 ]) - x(x)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02]) - y(y)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02])
- reference(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[4.71445446e-06, 7.75758690e-06, 1.01020169e-05, ..., 4.10832436e-05, 4.76427813e-05, 5.85681337e-05], [4.34022331e-06, 4.78917354e-06, 1.12746284e-05, ..., 4.23304155e-05, 4.57970564e-05, 4.89398699e-05], [5.01396698e-06, 6.53521511e-06, 8.60572800e-06, ..., 3.69178924e-05, 4.08334890e-05, 4.01354228e-05], ..., [6.68528946e-06, 1.79599192e-05, 1.63626792e-05, ..., 3.28511087e-05, 3.26269546e-05, 3.94112831e-05], [4.98900863e-06, 9.65306663e-06, 1.18486942e-05, ..., 2.96086237e-05, 3.01074888e-05, 5.04119962e-05], [5.76179400e-06, 6.31042167e-06, 8.82988479e-06, ..., 2.97575807e-05, 3.33997377e-05, 5.27818593e-05]], [[9.50362846e-06, 1.59641259e-05, 1.29707532e-05, ..., 5.83686233e-05, 5.49515826e-05, 6.31333241e-05], [6.33586069e-06, 7.38335575e-06, 1.08007198e-05, ..., 6.33072341e-05, 6.37566700e-05, 6.61514932e-05], [5.23812469e-06, 9.60330635e-06, 7.73262855e-06, ..., 5.76449602e-05, 5.69216099e-05, 7.53802451e-05], ..., [1.38188934e-05, 2.13268868e-05, 1.91072595e-05, ..., 5.27562661e-05, 3.57940844e-05, 4.54476285e-05], [1.47167948e-05, 1.64130761e-05, 2.31729282e-05, ..., 4.82909272e-05, 5.40533583e-05, 4.91145911e-05], [1.47667115e-05, 1.44427213e-05, 1.66876307e-05, ..., 4.82666073e-05, 3.44222717e-05, 6.17855039e-05]], [[6.56017392e-06, 1.91069339e-05, 1.99798778e-05, ..., 5.74951991e-05, 5.73452817e-05, 8.61307199e-05], [8.83004031e-06, 1.24718863e-05, 2.57919128e-05, ..., 7.99196641e-05, 7.49308092e-05, 7.84977674e-05], [1.16736619e-05, 1.25218030e-05, 2.24494233e-05, ..., 8.43597227e-05, 6.45044929e-05, 8.01940696e-05], ..., [1.30704302e-05, 3.06060429e-05, 2.84107282e-05, ..., 6.12119184e-05, 6.00397907e-05, 5.68467403e-05], [1.65874717e-05, 2.46194577e-05, 3.35990917e-05, ..., 4.70687155e-05, 4.95630593e-05, 6.89693479e-05], [1.99051574e-05, 2.22497438e-05, 2.89347226e-05, ..., 5.57990898e-05, 4.52729219e-05, 6.34069147e-05]], ..., [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]) - sample(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[7.61480214e-06, 1.05288536e-05, 1.68073384e-05, ..., 3.79096491e-05, 4.08387314e-05, 4.65304220e-05], [8.80150128e-06, 9.44716430e-06, 1.58756484e-05, ..., 4.59305193e-05, 3.58515717e-05, 5.19979330e-05], [3.57435943e-06, 9.74783597e-06, 9.98819996e-06, ..., 4.79728078e-05, 4.43530735e-05, 4.54937253e-05], ..., [7.50979234e-06, 1.29022510e-05, 1.55152484e-05, ..., 3.10604555e-05, 3.26675763e-05, 3.43037973e-05], [5.34708533e-06, 9.19215381e-06, 1.56802744e-05, ..., 2.89428335e-05, 2.78607622e-05, 4.69207880e-05], [1.15048615e-05, 1.19104498e-05, 1.17751879e-05, ..., 3.24725843e-05, 2.19729282e-05, 5.91474163e-05]], [[8.20073546e-06, 9.76248066e-06, 2.02762112e-05, ..., 4.98193367e-05, 5.01494869e-05, 6.18649428e-05], [6.83378448e-06, 7.47973581e-06, 1.72575346e-05, ..., 5.96269019e-05, 5.12161459e-05, 6.39076170e-05], [5.58735564e-06, 1.12494690e-05, 1.38328860e-05, ..., 5.36938824e-05, 5.95968449e-05, 5.46255687e-05], ..., [9.08676247e-06, 2.21236005e-05, 2.43313934e-05, ..., 5.58571701e-05, 3.34781726e-05, 4.57342830e-05], [1.27665135e-05, 1.57852846e-05, 1.86542511e-05, ..., 3.24718203e-05, 3.97717886e-05, 5.89512747e-05], [1.17151694e-05, 3.00237589e-05, 2.21238897e-05, ..., 4.65000812e-05, 3.57914578e-05, 6.42829473e-05]], [[1.00329007e-05, 1.79782437e-05, 2.67343712e-05, ..., 6.45832406e-05, 6.74671392e-05, 9.01614549e-05], [5.51211315e-06, 1.12795251e-05, 2.22736962e-05, ..., 8.63014502e-05, 6.46434492e-05, 8.48595446e-05], [7.40449377e-06, 1.26462810e-05, 1.28115034e-05, ..., 7.56977461e-05, 7.96627501e-05, 6.65508705e-05], ..., [1.46288376e-05, 2.72300331e-05, 2.65692488e-05, ..., 5.47755735e-05, 4.09427885e-05, 8.12849976e-05], [1.30968583e-05, 2.03062682e-05, 2.66293628e-05, ..., 5.88009934e-05, 5.28680721e-05, 5.92363504e-05], [2.05465385e-05, 3.16757760e-05, 3.55057200e-05, ..., 5.91163116e-05, 4.57940150e-05, 7.95425221e-05]], ..., [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]]) - sample_elastic(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[3.61240677e-06, 1.12112757e-05, 1.36620611e-05, ..., 3.80424754e-05, 3.73661715e-05, 5.19032765e-05], [5.63355525e-06, 8.49790013e-06, 1.32961704e-05, ..., 5.13463492e-05, 3.52100251e-05, 4.13845846e-05], [3.88295803e-06, 6.72346869e-06, 1.20068526e-05, ..., 4.23627243e-05, 4.10256907e-05, 4.63811884e-05], ..., [6.11882342e-06, 1.00335283e-05, 1.44657542e-05, ..., 3.40715778e-05, 2.71971385e-05, 3.81855825e-05], [1.05271638e-05, 1.36302642e-05, 1.33676749e-05, ..., 2.97033512e-05, 3.26871268e-05, 4.10022622e-05], [1.45217909e-05, 1.18796679e-05, 1.75690566e-05, ..., 2.84624675e-05, 2.15076452e-05, 4.01426842e-05]], [[6.20640458e-06, 8.79228719e-06, 1.76405138e-05, ..., 5.30641846e-05, 5.21494876e-05, 6.33927120e-05], [4.70252371e-06, 9.65176423e-06, 1.88021841e-05, ..., 6.49683498e-05, 5.18076886e-05, 7.18192168e-05], [5.91201797e-06, 7.81373910e-06, 9.17440775e-06, ..., 5.95099082e-05, 6.15470344e-05, 5.92473189e-05], ..., [8.91181844e-06, 2.15077016e-05, 2.01947532e-05, ..., 4.93884872e-05, 4.16303847e-05, 4.97147776e-05], [1.49828174e-05, 1.69800314e-05, 2.05288943e-05, ..., 4.33253008e-05, 3.71587557e-05, 5.21814363e-05], [1.30651742e-05, 1.81178693e-05, 2.43004379e-05, ..., 4.98579357e-05, 3.57507270e-05, 6.16339967e-05]], [[1.00814004e-05, 1.48634945e-05, 2.37910826e-05, ..., 7.17473595e-05, 6.98375661e-05, 8.32051956e-05], [5.41067357e-06, 1.33596141e-05, 2.24702253e-05, ..., 8.48204945e-05, 7.57495291e-05, 8.08815894e-05], [7.17709418e-06, 9.14240809e-06, 1.65503461e-05, ..., 7.10470049e-05, 7.49617102e-05, 8.15103776e-05], ..., [1.39563981e-05, 3.55513730e-05, 3.51455747e-05, ..., 6.52942326e-05, 5.29452154e-05, 6.94397822e-05], [1.50544265e-05, 2.45231149e-05, 2.78252646e-05, ..., 4.96907414e-05, 4.95554887e-05, 6.51270748e-05], [1.65344227e-05, 2.96633425e-05, 3.30290823e-05, ..., 5.68678879e-05, 4.20759425e-05, 6.59945144e-05]], ..., [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]], [[0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], ..., [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00], [0.00000000e+00, 0.00000000e+00, 0.00000000e+00, ..., 0.00000000e+00, 0.00000000e+00, 0.00000000e+00]]])
[11]:
plot(sc.sum(sc.sum(stitched, 'x'), 'y'))
Crop to relevant Tof section¶
We take a subset of the Tof range which contains the Bragg edges of interest:
[12]:
tof_start = 9.0e3*sc.units.us
tof_end = 2.75e4*sc.units.us
stitched = stitched["tof", tof_start:tof_end].copy()
Transmission Masking¶
Divides the integrated sample counts with an open beam reference. Any values > masking threshold will be masked. The adj pixels step checks for random pixels which were left unmasked or masked with all their neighbours having the same mask value. These are forced to True or false depending on their neighbour value.
[13]:
integrated = sc.sum(stitched, 'tof')
integrated /= integrated["reference"]
del integrated["reference"]
[14]:
masking_threshold = 0.80 * sc.units.one
for key in ["sample", "sample_elastic"]:
mask = integrated[key].data > masking_threshold
# Apply some neighbour smoothing to the masks
mask = imaging.operations.mask_from_adj_pixels(mask)
stitched[key].masks["non-sample-region"] = mask
stitched
[14]:
- tof: 129
- y: 324
- x: 324
- choppers()PyObject{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7d90>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f30245f7dd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7850>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3024603710>}
Values:
{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7d90>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f30245f7dd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7850>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3024603710>} - position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45]) - source_pulse_length()float64µs2860.0
Values:
array(2860.) - source_pulse_t_0()float64µs140.0
Values:
array(140.) - tof(tof [bin-edge])float64µs9493.62, 9634.25, ..., 27493.83, 27634.46
Values:
array([ 9493.62062274, 9634.24726491, 9774.87390708, 9915.50054924, 10056.12719141, 10196.75383358, 10337.38047575, 10478.00711792, 10618.63376009, 10759.26040226, 10899.88704443, 11040.5136866 , 11181.14032877, 11321.76697093, 11462.3936131 , 11603.02025527, 11743.64689744, 11884.27353961, 12024.90018178, 12165.52682395, 12306.15346612, 12446.78010829, 12587.40675046, 12728.03339262, 12868.66003479, 13009.28667696, 13149.91331913, 13290.5399613 , 13431.16660347, 13571.79324564, 13712.41988781, 13853.04652998, 13993.67317215, 14134.29981431, 14274.92645648, 14415.55309865, 14556.17974082, 14696.80638299, 14837.43302516, 14978.05966733, 15118.6863095 , 15259.31295167, 15399.93959384, 15540.566236 , 15681.19287817, 15821.81952034, 15962.44616251, 16103.07280468, 16243.69944685, 16384.32608902, 16524.95273119, 16665.57937336, 16806.20601553, 16946.83265769, 17087.45929986, 17228.08594203, 17368.7125842 , 17509.33922637, 17649.96586854, 17790.59251071, 17931.21915288, 18071.84579505, 18212.47243722, 18353.09907938, 18493.72572155, 18634.35236372, 18774.97900589, 18915.60564806, 19056.23229023, 19196.8589324 , 19337.48557457, 19478.11221674, 19618.73885891, 19759.36550107, 19899.99214324, 20040.61878541, 20181.24542758, 20321.87206975, 20462.49871192, 20603.12535409, 20743.75199626, 20884.37863843, 21025.0052806 , 21165.63192276, 21306.25856493, 21446.8852071 , 21587.51184927, 21728.13849144, 21868.76513361, 22009.39177578, 22150.01841795, 22290.64506012, 22431.27170229, 22571.89834445, 22712.52498662, 22853.15162879, 22993.77827096, 23134.40491313, 23275.0315553 , 23415.65819747, 23556.28483964, 23696.91148181, 23837.53812398, 23978.16476614, 24118.79140831, 24259.41805048, 24400.04469265, 24540.67133482, 24681.29797699, 24821.92461916, 24962.55126133, 25103.1779035 , 25243.80454567, 25384.43118783, 25525.05783 , 25665.68447217, 25806.31111434, 25946.93775651, 26087.56439868, 26228.19104085, 26368.81768302, 26509.44432519, 26650.07096736, 26790.69760952, 26931.32425169, 27071.95089386, 27212.57753603, 27353.2041782 , 27493.83082037, 27634.45746254]) - x(x)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02]) - y(y)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02])
- reference(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
Values:
array([[[4.71445446e-06, 7.75758690e-06, 1.01020169e-05, ..., 4.10832436e-05, 4.76427813e-05, 5.85681337e-05], [4.34022331e-06, 4.78917354e-06, 1.12746284e-05, ..., 4.23304155e-05, 4.57970564e-05, 4.89398699e-05], [5.01396698e-06, 6.53521511e-06, 8.60572800e-06, ..., 3.69178924e-05, 4.08334890e-05, 4.01354228e-05], ..., [6.68528946e-06, 1.79599192e-05, 1.63626792e-05, ..., 3.28511087e-05, 3.26269546e-05, 3.94112831e-05], [4.98900863e-06, 9.65306663e-06, 1.18486942e-05, ..., 2.96086237e-05, 3.01074888e-05, 5.04119962e-05], [5.76179400e-06, 6.31042167e-06, 8.82988479e-06, ..., 2.97575807e-05, 3.33997377e-05, 5.27818593e-05]], [[9.50362846e-06, 1.59641259e-05, 1.29707532e-05, ..., 5.83686233e-05, 5.49515826e-05, 6.31333241e-05], [6.33586069e-06, 7.38335575e-06, 1.08007198e-05, ..., 6.33072341e-05, 6.37566700e-05, 6.61514932e-05], [5.23812469e-06, 9.60330635e-06, 7.73262855e-06, ..., 5.76449602e-05, 5.69216099e-05, 7.53802451e-05], ..., [1.38188934e-05, 2.13268868e-05, 1.91072595e-05, ..., 5.27562661e-05, 3.57940844e-05, 4.54476285e-05], [1.47167948e-05, 1.64130761e-05, 2.31729282e-05, ..., 4.82909272e-05, 5.40533583e-05, 4.91145911e-05], [1.47667115e-05, 1.44427213e-05, 1.66876307e-05, ..., 4.82666073e-05, 3.44222717e-05, 6.17855039e-05]], [[6.56017392e-06, 1.91069339e-05, 1.99798778e-05, ..., 5.74951991e-05, 5.73452817e-05, 8.61307199e-05], [8.83004031e-06, 1.24718863e-05, 2.57919128e-05, ..., 7.99196641e-05, 7.49308092e-05, 7.84977674e-05], [1.16736619e-05, 1.25218030e-05, 2.24494233e-05, ..., 8.43597227e-05, 6.45044929e-05, 8.01940696e-05], ..., [1.30704302e-05, 3.06060429e-05, 2.84107282e-05, ..., 6.12119184e-05, 6.00397907e-05, 5.68467403e-05], [1.65874717e-05, 2.46194577e-05, 3.35990917e-05, ..., 4.70687155e-05, 4.95630593e-05, 6.89693479e-05], [1.99051574e-05, 2.22497438e-05, 2.89347226e-05, ..., 5.57990898e-05, 4.52729219e-05, 6.34069147e-05]], ..., [[2.64052996e-05, 5.75969971e-05, 8.41096407e-05, ..., 1.04648418e-04, 1.31480323e-04, 1.42508929e-04], [3.51903109e-05, 4.46875856e-05, 5.99949381e-05, ..., 1.23900711e-04, 1.12576323e-04, 1.41680372e-04], [2.24419164e-05, 2.63175352e-05, 6.16453690e-05, ..., 1.16306583e-04, 9.25860222e-05, 1.18878408e-04], ..., [3.60188751e-05, 9.03698019e-05, 7.26622529e-05, ..., 9.49979585e-05, 6.73782852e-05, 8.77599668e-05], [5.54020080e-05, 8.52194426e-05, 8.04917800e-05, ..., 1.12484646e-04, 9.01970488e-05, 1.14983217e-04], [5.00173992e-05, 8.04839510e-05, 6.27395202e-05, ..., 9.16775098e-05, 5.89242773e-05, 1.29573251e-04]], [[4.06509498e-05, 5.38130662e-05, 7.47314771e-05, ..., 1.20612705e-04, 1.04011051e-04, 1.31994675e-04], [2.31553076e-05, 4.26536135e-05, 6.32343144e-05, ..., 1.27815467e-04, 1.04709914e-04, 1.30290573e-04], [1.35691416e-05, 2.45060783e-05, 4.61417985e-05, ..., 9.90686967e-05, 1.20839148e-04, 1.06613057e-04], ..., [4.09232234e-05, 8.18727203e-05, 7.30390966e-05, ..., 7.66843659e-05, 7.62510826e-05, 8.79053114e-05], [4.57543247e-05, 5.71363089e-05, 7.16033319e-05, ..., 9.94141665e-05, 8.17536347e-05, 1.09218970e-04], [5.41624977e-05, 7.53951026e-05, 8.65702095e-05, ..., 1.11709734e-04, 5.71899909e-05, 1.00745405e-04]], [[2.61945406e-05, 5.56049672e-05, 7.39682655e-05, ..., 9.27872752e-05, 1.06586769e-04, 1.16644282e-04], [2.18123751e-05, 3.45529297e-05, 6.91975874e-05, ..., 1.34193571e-04, 8.89759831e-05, 1.06567219e-04], [2.91342330e-05, 3.45372937e-05, 5.86911119e-05, ..., 1.04302897e-04, 9.87007807e-05, 1.14180919e-04], ..., [4.36169285e-05, 7.18767187e-05, 8.35846586e-05, ..., 7.68308309e-05, 8.42365698e-05, 8.17156179e-05], [4.13067610e-05, 6.21060608e-05, 7.69762119e-05, ..., 7.89174155e-05, 7.31883774e-05, 9.41565304e-05], [4.24310965e-05, 9.20386665e-05, 7.91214334e-05, ..., 8.69118085e-05, 6.09895433e-05, 1.11920512e-04]]]) - sample(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
- non-sample-region(y, x)boolTrue, True, ..., True, True
Values:
array([[ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], ..., [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True]])
Values:
array([[[7.61480214e-06, 1.05288536e-05, 1.68073384e-05, ..., 3.79096491e-05, 4.08387314e-05, 4.65304220e-05], [8.80150128e-06, 9.44716430e-06, 1.58756484e-05, ..., 4.59305193e-05, 3.58515717e-05, 5.19979330e-05], [3.57435943e-06, 9.74783597e-06, 9.98819996e-06, ..., 4.79728078e-05, 4.43530735e-05, 4.54937253e-05], ..., [7.50979234e-06, 1.29022510e-05, 1.55152484e-05, ..., 3.10604555e-05, 3.26675763e-05, 3.43037973e-05], [5.34708533e-06, 9.19215381e-06, 1.56802744e-05, ..., 2.89428335e-05, 2.78607622e-05, 4.69207880e-05], [1.15048615e-05, 1.19104498e-05, 1.17751879e-05, ..., 3.24725843e-05, 2.19729282e-05, 5.91474163e-05]], [[8.20073546e-06, 9.76248066e-06, 2.02762112e-05, ..., 4.98193367e-05, 5.01494869e-05, 6.18649428e-05], [6.83378448e-06, 7.47973581e-06, 1.72575346e-05, ..., 5.96269019e-05, 5.12161459e-05, 6.39076170e-05], [5.58735564e-06, 1.12494690e-05, 1.38328860e-05, ..., 5.36938824e-05, 5.95968449e-05, 5.46255687e-05], ..., [9.08676247e-06, 2.21236005e-05, 2.43313934e-05, ..., 5.58571701e-05, 3.34781726e-05, 4.57342830e-05], [1.27665135e-05, 1.57852846e-05, 1.86542511e-05, ..., 3.24718203e-05, 3.97717886e-05, 5.89512747e-05], [1.17151694e-05, 3.00237589e-05, 2.21238897e-05, ..., 4.65000812e-05, 3.57914578e-05, 6.42829473e-05]], [[1.00329007e-05, 1.79782437e-05, 2.67343712e-05, ..., 6.45832406e-05, 6.74671392e-05, 9.01614549e-05], [5.51211315e-06, 1.12795251e-05, 2.22736962e-05, ..., 8.63014502e-05, 6.46434492e-05, 8.48595446e-05], [7.40449377e-06, 1.26462810e-05, 1.28115034e-05, ..., 7.56977461e-05, 7.96627501e-05, 6.65508705e-05], ..., [1.46288376e-05, 2.72300331e-05, 2.65692488e-05, ..., 5.47755735e-05, 4.09427885e-05, 8.12849976e-05], [1.30968583e-05, 2.03062682e-05, 2.66293628e-05, ..., 5.88009934e-05, 5.28680721e-05, 5.92363504e-05], [2.05465385e-05, 3.16757760e-05, 3.55057200e-05, ..., 5.91163116e-05, 4.57940150e-05, 7.95425221e-05]], ..., [[3.00988067e-05, 5.26278018e-05, 6.85178020e-05, ..., 1.01020261e-04, 1.02327787e-04, 1.56166847e-04], [2.95786886e-05, 3.89902889e-05, 7.13927584e-05, ..., 1.13455266e-04, 1.11062400e-04, 1.23720267e-04], [2.53063208e-05, 3.63556974e-05, 5.09294223e-05, ..., 9.56107033e-05, 1.03669990e-04, 1.14336275e-04], ..., [2.73790465e-05, 6.50382353e-05, 8.08642799e-05, ..., 9.32464391e-05, 7.14250782e-05, 9.37302029e-05], [3.79965095e-05, 5.79026964e-05, 7.16654467e-05, ..., 8.75120240e-05, 7.94527368e-05, 1.09019617e-04], [5.66786584e-05, 8.18321423e-05, 7.37105656e-05, ..., 8.57008708e-05, 7.69497638e-05, 1.17814838e-04]], [[2.53803773e-05, 4.65829944e-05, 7.64902434e-05, ..., 9.55854557e-05, 9.68195891e-05, 1.40477117e-04], [2.50036719e-05, 3.50852024e-05, 6.63046958e-05, ..., 1.17245909e-04, 1.07868967e-04, 9.37460209e-05], [2.10362978e-05, 3.46832385e-05, 6.12536751e-05, ..., 9.78244934e-05, 1.14674251e-04, 1.10214387e-04], ..., [4.05917126e-05, 8.33160666e-05, 7.09467131e-05, ..., 7.32133267e-05, 7.38051458e-05, 8.66222836e-05], [3.77702818e-05, 7.15038477e-05, 6.65356420e-05, ..., 7.74281216e-05, 7.83061114e-05, 9.17174111e-05], [5.06614415e-05, 8.73362951e-05, 8.00832568e-05, ..., 6.36701079e-05, 6.66719716e-05, 1.18724456e-04]], [[2.88764477e-05, 4.75720517e-05, 6.78943397e-05, ..., 9.02852844e-05, 8.95965204e-05, 1.25592022e-04], [2.47427706e-05, 3.92976435e-05, 6.44699830e-05, ..., 1.02609898e-04, 9.13272161e-05, 1.04733786e-04], [1.43098005e-05, 3.15891375e-05, 4.94091182e-05, ..., 1.00967394e-04, 9.82769634e-05, 1.08562454e-04], ..., [3.27004091e-05, 7.89161277e-05, 8.09359772e-05, ..., 7.81768467e-05, 5.43561437e-05, 9.10710078e-05], [3.06717811e-05, 5.53404934e-05, 9.15787095e-05, ..., 6.06089889e-05, 7.79112233e-05, 1.12455768e-04], [4.19480530e-05, 7.16725044e-05, 8.63819077e-05, ..., 7.61205956e-05, 5.98784827e-05, 1.10833804e-04]]]) - sample_elastic(tof, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
- non-sample-region(y, x)boolTrue, True, ..., True, True
Values:
array([[ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], ..., [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True]])
Values:
array([[[3.61240677e-06, 1.12112757e-05, 1.36620611e-05, ..., 3.80424754e-05, 3.73661715e-05, 5.19032765e-05], [5.63355525e-06, 8.49790013e-06, 1.32961704e-05, ..., 5.13463492e-05, 3.52100251e-05, 4.13845846e-05], [3.88295803e-06, 6.72346869e-06, 1.20068526e-05, ..., 4.23627243e-05, 4.10256907e-05, 4.63811884e-05], ..., [6.11882342e-06, 1.00335283e-05, 1.44657542e-05, ..., 3.40715778e-05, 2.71971385e-05, 3.81855825e-05], [1.05271638e-05, 1.36302642e-05, 1.33676749e-05, ..., 2.97033512e-05, 3.26871268e-05, 4.10022622e-05], [1.45217909e-05, 1.18796679e-05, 1.75690566e-05, ..., 2.84624675e-05, 2.15076452e-05, 4.01426842e-05]], [[6.20640458e-06, 8.79228719e-06, 1.76405138e-05, ..., 5.30641846e-05, 5.21494876e-05, 6.33927120e-05], [4.70252371e-06, 9.65176423e-06, 1.88021841e-05, ..., 6.49683498e-05, 5.18076886e-05, 7.18192168e-05], [5.91201797e-06, 7.81373910e-06, 9.17440775e-06, ..., 5.95099082e-05, 6.15470344e-05, 5.92473189e-05], ..., [8.91181844e-06, 2.15077016e-05, 2.01947532e-05, ..., 4.93884872e-05, 4.16303847e-05, 4.97147776e-05], [1.49828174e-05, 1.69800314e-05, 2.05288943e-05, ..., 4.33253008e-05, 3.71587557e-05, 5.21814363e-05], [1.30651742e-05, 1.81178693e-05, 2.43004379e-05, ..., 4.98579357e-05, 3.57507270e-05, 6.16339967e-05]], [[1.00814004e-05, 1.48634945e-05, 2.37910826e-05, ..., 7.17473595e-05, 6.98375661e-05, 8.32051956e-05], [5.41067357e-06, 1.33596141e-05, 2.24702253e-05, ..., 8.48204945e-05, 7.57495291e-05, 8.08815894e-05], [7.17709418e-06, 9.14240809e-06, 1.65503461e-05, ..., 7.10470049e-05, 7.49617102e-05, 8.15103776e-05], ..., [1.39563981e-05, 3.55513730e-05, 3.51455747e-05, ..., 6.52942326e-05, 5.29452154e-05, 6.94397822e-05], [1.50544265e-05, 2.45231149e-05, 2.78252646e-05, ..., 4.96907414e-05, 4.95554887e-05, 6.51270748e-05], [1.65344227e-05, 2.96633425e-05, 3.30290823e-05, ..., 5.68678879e-05, 4.20759425e-05, 6.59945144e-05]], ..., [[3.38619175e-05, 4.85578421e-05, 7.41703552e-05, ..., 1.07705360e-04, 9.82012789e-05, 1.30524611e-04], [2.43457125e-05, 3.39612598e-05, 5.61789420e-05, ..., 1.25727267e-04, 1.00599136e-04, 1.44279751e-04], [2.16038188e-05, 3.66079221e-05, 6.18763952e-05, ..., 1.13642156e-04, 1.18079945e-04, 1.19468205e-04], ..., [3.52526658e-05, 6.73216709e-05, 7.66195735e-05, ..., 9.27663496e-05, 7.55703586e-05, 9.58497840e-05], [3.85465428e-05, 7.11917819e-05, 7.56750669e-05, ..., 7.75127264e-05, 8.17992986e-05, 1.07911168e-04], [5.47359341e-05, 7.67818783e-05, 8.05688760e-05, ..., 8.52288940e-05, 7.47102022e-05, 1.06707506e-04]], [[3.29709037e-05, 5.38607965e-05, 7.63443968e-05, ..., 1.04339240e-04, 1.11899710e-04, 1.28529267e-04], [2.91393153e-05, 3.38314203e-05, 7.28521918e-05, ..., 1.13081791e-04, 1.00465026e-04, 1.24680533e-04], [1.96081164e-05, 4.39575742e-05, 5.39096545e-05, ..., 1.02120961e-04, 1.10899367e-04, 9.79649485e-05], ..., [3.26256268e-05, 8.24468589e-05, 7.74278597e-05, ..., 8.24540111e-05, 7.30296379e-05, 9.67115484e-05], [4.10441135e-05, 6.74365219e-05, 7.15053102e-05, ..., 7.72933854e-05, 7.85405355e-05, 9.35250209e-05], [5.53384016e-05, 7.22668556e-05, 8.25399693e-05, ..., 8.71536104e-05, 6.42829909e-05, 1.11281384e-04]], [[2.96352810e-05, 5.31655933e-05, 7.95505184e-05, ..., 9.10879317e-05, 1.01755184e-04, 1.19225995e-04], [2.91872711e-05, 3.74267111e-05, 6.35669421e-05, ..., 1.07588006e-04, 8.45583127e-05, 1.05804371e-04], [2.37712684e-05, 3.61353013e-05, 5.50653458e-05, ..., 8.82688037e-05, 1.06994637e-04, 9.21501851e-05], ..., [3.51278213e-05, 7.57456946e-05, 8.32585283e-05, ..., 7.88979523e-05, 6.53639581e-05, 8.58170679e-05], [4.41496522e-05, 6.54044416e-05, 6.79075456e-05, ..., 8.04076481e-05, 7.15641800e-05, 8.20072455e-05], [5.29355239e-05, 6.75784904e-05, 7.50258914e-05, ..., 7.08851876e-05, 6.22717926e-05, 9.19313243e-05]]])
[15]:
plot(sc.sum(stitched["sample"], "tof"))
Convert to wavelength¶
Scipp’s neutron
submodule contains utilities specific to neutron science, and in particular unit conversions.
[16]:
stitched = sn.convert(stitched, origin="tof", target="wavelength", scatter=False)
# Rebin to common wavelength axis
edges = sc.array(dims=["wavelength"],
values=np.linspace(2.0, 5.5, 129), unit=sc.units.angstrom)
wavelength = sc.rebin(stitched, "wavelength", edges)
wavelength
[16]:
- wavelength: 128
- y: 324
- x: 324
- choppers()PyObject{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7d90>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f30245f7dd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7850>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3024603710>}
Values:
{'WFMC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7d90>, 'WFMC2': <ess.wfm.choppers.Chopper object at 0x7f30245f7dd0>, 'FOC1': <ess.wfm.choppers.Chopper object at 0x7f30245f7850>, 'FOC2': <ess.wfm.choppers.Chopper object at 0x7f3024603710>} - source_pulse_length()float64µs2860.0
Values:
array(2860.) - source_pulse_t_0()float64µs140.0
Values:
array(140.) - wavelength(wavelength [bin-edge])float64Å2.0, 2.03, ..., 5.47, 5.5
Values:
array([2. , 2.02734375, 2.0546875 , 2.08203125, 2.109375 , 2.13671875, 2.1640625 , 2.19140625, 2.21875 , 2.24609375, 2.2734375 , 2.30078125, 2.328125 , 2.35546875, 2.3828125 , 2.41015625, 2.4375 , 2.46484375, 2.4921875 , 2.51953125, 2.546875 , 2.57421875, 2.6015625 , 2.62890625, 2.65625 , 2.68359375, 2.7109375 , 2.73828125, 2.765625 , 2.79296875, 2.8203125 , 2.84765625, 2.875 , 2.90234375, 2.9296875 , 2.95703125, 2.984375 , 3.01171875, 3.0390625 , 3.06640625, 3.09375 , 3.12109375, 3.1484375 , 3.17578125, 3.203125 , 3.23046875, 3.2578125 , 3.28515625, 3.3125 , 3.33984375, 3.3671875 , 3.39453125, 3.421875 , 3.44921875, 3.4765625 , 3.50390625, 3.53125 , 3.55859375, 3.5859375 , 3.61328125, 3.640625 , 3.66796875, 3.6953125 , 3.72265625, 3.75 , 3.77734375, 3.8046875 , 3.83203125, 3.859375 , 3.88671875, 3.9140625 , 3.94140625, 3.96875 , 3.99609375, 4.0234375 , 4.05078125, 4.078125 , 4.10546875, 4.1328125 , 4.16015625, 4.1875 , 4.21484375, 4.2421875 , 4.26953125, 4.296875 , 4.32421875, 4.3515625 , 4.37890625, 4.40625 , 4.43359375, 4.4609375 , 4.48828125, 4.515625 , 4.54296875, 4.5703125 , 4.59765625, 4.625 , 4.65234375, 4.6796875 , 4.70703125, 4.734375 , 4.76171875, 4.7890625 , 4.81640625, 4.84375 , 4.87109375, 4.8984375 , 4.92578125, 4.953125 , 4.98046875, 5.0078125 , 5.03515625, 5.0625 , 5.08984375, 5.1171875 , 5.14453125, 5.171875 , 5.19921875, 5.2265625 , 5.25390625, 5.28125 , 5.30859375, 5.3359375 , 5.36328125, 5.390625 , 5.41796875, 5.4453125 , 5.47265625, 5.5 ]) - x(x)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02]) - y(y)float64m-0.01, -0.01, ..., 0.01, 0.01
Values:
array([-1.1305e-02, -1.1235e-02, -1.1165e-02, -1.1095e-02, -1.1025e-02, -1.0955e-02, -1.0885e-02, -1.0815e-02, -1.0745e-02, -1.0675e-02, -1.0605e-02, -1.0535e-02, -1.0465e-02, -1.0395e-02, -1.0325e-02, -1.0255e-02, -1.0185e-02, -1.0115e-02, -1.0045e-02, -9.9750e-03, -9.9050e-03, -9.8350e-03, -9.7650e-03, -9.6950e-03, -9.6250e-03, -9.5550e-03, -9.4850e-03, -9.4150e-03, -9.3450e-03, -9.2750e-03, -9.2050e-03, -9.1350e-03, -9.0650e-03, -8.9950e-03, -8.9250e-03, -8.8550e-03, -8.7850e-03, -8.7150e-03, -8.6450e-03, -8.5750e-03, -8.5050e-03, -8.4350e-03, -8.3650e-03, -8.2950e-03, -8.2250e-03, -8.1550e-03, -8.0850e-03, -8.0150e-03, -7.9450e-03, -7.8750e-03, -7.8050e-03, -7.7350e-03, -7.6650e-03, -7.5950e-03, -7.5250e-03, -7.4550e-03, -7.3850e-03, -7.3150e-03, -7.2450e-03, -7.1750e-03, -7.1050e-03, -7.0350e-03, -6.9650e-03, -6.8950e-03, -6.8250e-03, -6.7550e-03, -6.6850e-03, -6.6150e-03, -6.5450e-03, -6.4750e-03, -6.4050e-03, -6.3350e-03, -6.2650e-03, -6.1950e-03, -6.1250e-03, -6.0550e-03, -5.9850e-03, -5.9150e-03, -5.8450e-03, -5.7750e-03, -5.7050e-03, -5.6350e-03, -5.5650e-03, -5.4950e-03, -5.4250e-03, -5.3550e-03, -5.2850e-03, -5.2150e-03, -5.1450e-03, -5.0750e-03, -5.0050e-03, -4.9350e-03, -4.8650e-03, -4.7950e-03, -4.7250e-03, -4.6550e-03, -4.5850e-03, -4.5150e-03, -4.4450e-03, -4.3750e-03, -4.3050e-03, -4.2350e-03, -4.1650e-03, -4.0950e-03, -4.0250e-03, -3.9550e-03, -3.8850e-03, -3.8150e-03, -3.7450e-03, -3.6750e-03, -3.6050e-03, -3.5350e-03, -3.4650e-03, -3.3950e-03, -3.3250e-03, -3.2550e-03, -3.1850e-03, -3.1150e-03, -3.0450e-03, -2.9750e-03, -2.9050e-03, -2.8350e-03, -2.7650e-03, -2.6950e-03, -2.6250e-03, -2.5550e-03, -2.4850e-03, -2.4150e-03, -2.3450e-03, -2.2750e-03, -2.2050e-03, -2.1350e-03, -2.0650e-03, -1.9950e-03, -1.9250e-03, -1.8550e-03, -1.7850e-03, -1.7150e-03, -1.6450e-03, -1.5750e-03, -1.5050e-03, -1.4350e-03, -1.3650e-03, -1.2950e-03, -1.2250e-03, -1.1550e-03, -1.0850e-03, -1.0150e-03, -9.4500e-04, -8.7500e-04, -8.0500e-04, -7.3500e-04, -6.6500e-04, -5.9500e-04, -5.2500e-04, -4.5500e-04, -3.8500e-04, -3.1500e-04, -2.4500e-04, -1.7500e-04, -1.0500e-04, -3.5000e-05, 3.5000e-05, 1.0500e-04, 1.7500e-04, 2.4500e-04, 3.1500e-04, 3.8500e-04, 4.5500e-04, 5.2500e-04, 5.9500e-04, 6.6500e-04, 7.3500e-04, 8.0500e-04, 8.7500e-04, 9.4500e-04, 1.0150e-03, 1.0850e-03, 1.1550e-03, 1.2250e-03, 1.2950e-03, 1.3650e-03, 1.4350e-03, 1.5050e-03, 1.5750e-03, 1.6450e-03, 1.7150e-03, 1.7850e-03, 1.8550e-03, 1.9250e-03, 1.9950e-03, 2.0650e-03, 2.1350e-03, 2.2050e-03, 2.2750e-03, 2.3450e-03, 2.4150e-03, 2.4850e-03, 2.5550e-03, 2.6250e-03, 2.6950e-03, 2.7650e-03, 2.8350e-03, 2.9050e-03, 2.9750e-03, 3.0450e-03, 3.1150e-03, 3.1850e-03, 3.2550e-03, 3.3250e-03, 3.3950e-03, 3.4650e-03, 3.5350e-03, 3.6050e-03, 3.6750e-03, 3.7450e-03, 3.8150e-03, 3.8850e-03, 3.9550e-03, 4.0250e-03, 4.0950e-03, 4.1650e-03, 4.2350e-03, 4.3050e-03, 4.3750e-03, 4.4450e-03, 4.5150e-03, 4.5850e-03, 4.6550e-03, 4.7250e-03, 4.7950e-03, 4.8650e-03, 4.9350e-03, 5.0050e-03, 5.0750e-03, 5.1450e-03, 5.2150e-03, 5.2850e-03, 5.3550e-03, 5.4250e-03, 5.4950e-03, 5.5650e-03, 5.6350e-03, 5.7050e-03, 5.7750e-03, 5.8450e-03, 5.9150e-03, 5.9850e-03, 6.0550e-03, 6.1250e-03, 6.1950e-03, 6.2650e-03, 6.3350e-03, 6.4050e-03, 6.4750e-03, 6.5450e-03, 6.6150e-03, 6.6850e-03, 6.7550e-03, 6.8250e-03, 6.8950e-03, 6.9650e-03, 7.0350e-03, 7.1050e-03, 7.1750e-03, 7.2450e-03, 7.3150e-03, 7.3850e-03, 7.4550e-03, 7.5250e-03, 7.5950e-03, 7.6650e-03, 7.7350e-03, 7.8050e-03, 7.8750e-03, 7.9450e-03, 8.0150e-03, 8.0850e-03, 8.1550e-03, 8.2250e-03, 8.2950e-03, 8.3650e-03, 8.4350e-03, 8.5050e-03, 8.5750e-03, 8.6450e-03, 8.7150e-03, 8.7850e-03, 8.8550e-03, 8.9250e-03, 8.9950e-03, 9.0650e-03, 9.1350e-03, 9.2050e-03, 9.2750e-03, 9.3450e-03, 9.4150e-03, 9.4850e-03, 9.5550e-03, 9.6250e-03, 9.6950e-03, 9.7650e-03, 9.8350e-03, 9.9050e-03, 9.9750e-03, 1.0045e-02, 1.0115e-02, 1.0185e-02, 1.0255e-02, 1.0325e-02, 1.0395e-02, 1.0465e-02, 1.0535e-02, 1.0605e-02, 1.0675e-02, 1.0745e-02, 1.0815e-02, 1.0885e-02, 1.0955e-02, 1.1025e-02, 1.1095e-02, 1.1165e-02, 1.1235e-02, 1.1305e-02])
- reference(wavelength, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
- position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45])
Values:
array([[[8.79198112e-06, 1.47651023e-05, 1.20812069e-05, ..., 5.42681389e-05, 5.12909079e-05, 5.90129952e-05], [5.88809796e-06, 6.85557994e-06, 1.01237853e-05, ..., 5.88101385e-05, 5.92981983e-05, 6.15572520e-05], [4.89970928e-06, 8.92366477e-06, 7.25988128e-06, ..., 5.35138485e-05, 5.29399101e-05, 6.97967394e-05], ..., [1.27803276e-05, 1.98943484e-05, 1.78298748e-05, ..., 4.89546472e-05, 3.34451234e-05, 4.24202596e-05], [1.35632695e-05, 1.52177083e-05, 2.14455743e-05, ..., 4.48007876e-05, 5.00791378e-05, 4.60172267e-05], [1.36261164e-05, 1.33421934e-05, 1.54503262e-05, ..., 4.47818769e-05, 3.22084178e-05, 5.76520662e-05]], [[6.39554848e-06, 1.76206482e-05, 1.81057733e-05, ..., 5.39105351e-05, 5.34893985e-05, 7.86719793e-05], [8.05364636e-06, 1.12407325e-05, 2.28619142e-05, ..., 7.34049687e-05, 6.92010095e-05, 7.24401934e-05], [1.03775616e-05, 1.14739547e-05, 1.97557636e-05, ..., 7.66942573e-05, 5.97469722e-05, 7.46758259e-05], ..., [1.23027821e-05, 2.78604785e-05, 2.58028122e-05, ..., 5.65889769e-05, 5.41345330e-05, 5.22487066e-05], [1.53708776e-05, 2.23471448e-05, 3.05644433e-05, ..., 4.41776980e-05, 4.67941147e-05, 6.28730384e-05], [1.81965666e-05, 2.01625885e-05, 2.60404914e-05, ..., 5.16000222e-05, 4.14587247e-05, 5.92315595e-05]], [[8.47790535e-06, 2.06186423e-05, 2.89326018e-05, ..., 6.41574258e-05, 6.65686084e-05, 1.05296708e-04], [1.45674662e-05, 1.82719177e-05, 2.88206659e-05, ..., 9.52618026e-05, 8.49780731e-05, 9.46369737e-05], [1.16763069e-05, 1.18033011e-05, 2.52397827e-05, ..., 7.51235239e-05, 6.23806877e-05, 8.92387646e-05], ..., [1.46130393e-05, 2.88537596e-05, 2.55232697e-05, ..., 7.09546997e-05, 5.27441012e-05, 7.74452104e-05], [2.53440069e-05, 3.50820895e-05, 2.86344467e-05, ..., 5.75351449e-05, 5.45127051e-05, 7.35870178e-05], [1.73428508e-05, 2.47974208e-05, 2.86431455e-05, ..., 5.66432514e-05, 4.17631618e-05, 9.30270860e-05]], ..., [[3.67520255e-05, 5.93349585e-05, 7.94253689e-05, ..., 1.53143104e-04, 1.25633958e-04, 1.83594218e-04], [3.14787978e-05, 3.45046419e-05, 8.30072177e-05, ..., 1.51367314e-04, 1.18264118e-04, 1.55955887e-04], [2.64803518e-05, 4.20357653e-05, 5.40768655e-05, ..., 1.15716313e-04, 1.57534255e-04, 1.37183070e-04], ..., [3.84597210e-05, 7.50557192e-05, 9.61021186e-05, ..., 1.04318043e-04, 9.59309601e-05, 8.62560761e-05], [4.83052117e-05, 6.47631029e-05, 7.69398328e-05, ..., 1.15171287e-04, 1.01956446e-04, 1.40774273e-04], [6.25319645e-05, 8.04221395e-05, 7.31821246e-05, ..., 8.76266255e-05, 8.19743596e-05, 1.59163951e-04]], [[3.46661488e-05, 5.34280603e-05, 8.92961501e-05, ..., 1.34270158e-04, 1.43957218e-04, 1.57690035e-04], [2.47303949e-05, 3.37860120e-05, 7.26327949e-05, ..., 1.67399715e-04, 1.32329558e-04, 1.54830423e-04], [2.53659810e-05, 4.57217682e-05, 5.51073010e-05, ..., 1.27972631e-04, 1.39820669e-04, 1.44208246e-04], ..., [4.45484203e-05, 8.22248754e-05, 8.69960217e-05, ..., 1.17141145e-04, 9.22838934e-05, 9.71362476e-05], [4.69979529e-05, 8.09754676e-05, 7.75045159e-05, ..., 9.50310748e-05, 1.01624652e-04, 1.45872523e-04], [4.78607982e-05, 7.67121843e-05, 7.01847218e-05, ..., 1.06834273e-04, 7.97634992e-05, 1.46558604e-04]], [[2.97078058e-05, 6.07224216e-05, 8.12244687e-05, ..., 1.33345992e-04, 1.28997258e-04, 1.56929953e-04], [2.46215139e-05, 2.80280156e-05, 6.94973729e-05, ..., 1.45339484e-04, 1.28463054e-04, 1.30611276e-04], [2.34350270e-05, 3.80465693e-05, 5.91321759e-05, ..., 1.38313410e-04, 1.35048183e-04, 1.30774505e-04], ..., [3.86719018e-05, 6.84294560e-05, 7.71555520e-05, ..., 9.22570262e-05, 9.00227200e-05, 1.09993501e-04], [4.74871371e-05, 6.73790202e-05, 7.35926563e-05, ..., 9.49005864e-05, 9.74311089e-05, 1.21846328e-04], [5.44620921e-05, 7.39759069e-05, 7.77176906e-05, ..., 1.19050370e-04, 9.46066311e-05, 1.31169999e-04]]]) - sample(wavelength, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
- non-sample-region(y, x)boolTrue, True, ..., True, True
Values:
array([[ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], ..., [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True]])
- position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45])
Values:
array([[[7.66568064e-06, 9.15814975e-06, 1.89082804e-05, ..., 4.63828226e-05, 4.67498693e-05, 5.75853790e-05], [6.44264216e-06, 7.04747054e-06, 1.61282544e-05, ..., 5.55262976e-05, 4.76137367e-05, 5.95743465e-05], [5.18685045e-06, 1.04999499e-05, 1.28667157e-05, ..., 5.01486426e-05, 5.54636737e-05, 5.09450232e-05], ..., [8.47322661e-06, 2.05098972e-05, 2.25861873e-05, ..., 5.17491729e-05, 3.13291356e-05, 4.25684714e-05], [1.17885654e-05, 1.46335960e-05, 1.74005900e-05, ..., 3.03262670e-05, 3.69747977e-05, 5.49307967e-05], [1.09647815e-05, 2.77090519e-05, 2.04850475e-05, ..., 4.32276558e-05, 3.32053211e-05, 6.00767330e-05]], [[9.23683200e-06, 1.61278555e-05, 2.44776726e-05, ..., 5.92036031e-05, 6.16844764e-05, 8.19907654e-05], [5.27483091e-06, 1.02350168e-05, 2.04248502e-05, ..., 7.85158445e-05, 5.93748406e-05, 7.76574960e-05], [6.77702150e-06, 1.17212760e-05, 1.20837902e-05, ..., 6.89884717e-05, 7.28676319e-05, 6.12899247e-05], ..., [1.32214125e-05, 2.50579456e-05, 2.46857344e-05, ..., 5.13819102e-05, 3.76951961e-05, 7.30559251e-05], [1.22348202e-05, 1.86252076e-05, 2.42489883e-05, ..., 5.27955448e-05, 4.83774439e-05, 5.54413012e-05], [1.84797691e-05, 2.95175619e-05, 3.20957131e-05, ..., 5.42692200e-05, 4.20195301e-05, 7.31680910e-05]], [[1.29865288e-05, 2.03551074e-05, 2.87075964e-05, ..., 6.64751115e-05, 7.36656369e-05, 1.02324313e-04], [6.78016551e-06, 1.33737203e-05, 2.61616643e-05, ..., 1.14615368e-04, 7.03599156e-05, 9.80099780e-05], [7.47671026e-06, 1.09194943e-05, 1.89202389e-05, ..., 8.28023572e-05, 8.18707105e-05, 7.48401318e-05], ..., [1.80343795e-05, 3.00344808e-05, 3.58437391e-05, ..., 6.52795108e-05, 5.66877871e-05, 7.88877507e-05], [1.57253920e-05, 2.66471477e-05, 3.47773492e-05, ..., 6.06470780e-05, 5.73493537e-05, 7.48685039e-05], [2.50759993e-05, 3.58041085e-05, 3.95322980e-05, ..., 5.91109495e-05, 5.41403257e-05, 9.56903716e-05]], ..., [[3.69522952e-05, 5.54785631e-05, 7.32293511e-05, ..., 1.22197406e-04, 1.49387467e-04, 1.60800527e-04], [2.26389072e-05, 3.86645247e-05, 6.57943191e-05, ..., 1.45370558e-04, 1.16794224e-04, 1.62353537e-04], [2.05638335e-05, 4.02743575e-05, 5.63781522e-05, ..., 1.34264552e-04, 1.30835971e-04, 1.50737142e-04], ..., [4.79278017e-05, 8.25017947e-05, 7.95923444e-05, ..., 1.32439110e-04, 1.09872422e-04, 1.10366379e-04], [5.79504837e-05, 6.38850798e-05, 8.31517654e-05, ..., 1.07003318e-04, 1.11390762e-04, 1.30801553e-04], [6.18695673e-05, 8.04014966e-05, 8.59080226e-05, ..., 1.19388479e-04, 8.82053271e-05, 1.49080685e-04]], [[2.67552529e-05, 4.83392903e-05, 7.17465019e-05, ..., 1.24349508e-04, 1.33262574e-04, 1.65319423e-04], [2.34621681e-05, 4.48078109e-05, 7.31748966e-05, ..., 1.63411607e-04, 1.06983645e-04, 1.44526232e-04], [2.05246956e-05, 3.86603008e-05, 6.12534247e-05, ..., 1.29954951e-04, 1.48027732e-04, 1.31770650e-04], ..., [3.94766560e-05, 8.30596687e-05, 7.46370466e-05, ..., 1.28429892e-04, 1.02429262e-04, 1.03572525e-04], [4.55845268e-05, 6.51019112e-05, 7.69826474e-05, ..., 9.47818385e-05, 1.01131815e-04, 1.27287625e-04], [4.92261854e-05, 8.76749489e-05, 9.78412681e-05, ..., 9.79750051e-05, 8.71040039e-05, 1.49477280e-04]], [[3.31754825e-05, 5.52596311e-05, 9.18417831e-05, ..., 1.21891007e-04, 1.29852274e-04, 1.73554526e-04], [2.40667101e-05, 3.85661594e-05, 6.18674057e-05, ..., 1.43742842e-04, 1.14222589e-04, 1.48547471e-04], [3.01211416e-05, 3.49151384e-05, 5.18534751e-05, ..., 1.28273019e-04, 1.60855442e-04, 1.18436759e-04], ..., [3.61585735e-05, 8.25269794e-05, 7.85965450e-05, ..., 1.12108428e-04, 9.35741201e-05, 1.00917739e-04], [4.18547335e-05, 7.61602315e-05, 7.49818653e-05, ..., 9.56615191e-05, 8.89178645e-05, 1.14074544e-04], [4.88466770e-05, 8.85091835e-05, 7.96737425e-05, ..., 9.66782976e-05, 8.36672113e-05, 1.44985985e-04]]]) - sample_elastic(wavelength, y, x)float64counts0.0, 0.0, ..., 0.0, 0.0
- non-sample-region(y, x)boolTrue, True, ..., True, True
Values:
array([[ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], ..., [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True], [ True, True, True, ..., True, True, True]])
- position(y, x)vector_3_float64m[-0.011305 -0.011305 0.6005 ], [-0.011235 -0.011305 0.6005 ], ..., [0.011235 0.011305 0.6005 ], [0.011305 0.011305 0.6005 ]
Values:
array([[[-0.011305, -0.011305, 0.6005 ], [-0.011235, -0.011305, 0.6005 ], [-0.011165, -0.011305, 0.6005 ], ..., [ 0.011165, -0.011305, 0.6005 ], [ 0.011235, -0.011305, 0.6005 ], [ 0.011305, -0.011305, 0.6005 ]], [[-0.011305, -0.011235, 0.6005 ], [-0.011235, -0.011235, 0.6005 ], [-0.011165, -0.011235, 0.6005 ], ..., [ 0.011165, -0.011235, 0.6005 ], [ 0.011235, -0.011235, 0.6005 ], [ 0.011305, -0.011235, 0.6005 ]], [[-0.011305, -0.011165, 0.6005 ], [-0.011235, -0.011165, 0.6005 ], [-0.011165, -0.011165, 0.6005 ], ..., [ 0.011165, -0.011165, 0.6005 ], [ 0.011235, -0.011165, 0.6005 ], [ 0.011305, -0.011165, 0.6005 ]], ..., [[-0.011305, 0.011165, 0.6005 ], [-0.011235, 0.011165, 0.6005 ], [-0.011165, 0.011165, 0.6005 ], ..., [ 0.011165, 0.011165, 0.6005 ], [ 0.011235, 0.011165, 0.6005 ], [ 0.011305, 0.011165, 0.6005 ]], [[-0.011305, 0.011235, 0.6005 ], [-0.011235, 0.011235, 0.6005 ], [-0.011165, 0.011235, 0.6005 ], ..., [ 0.011165, 0.011235, 0.6005 ], [ 0.011235, 0.011235, 0.6005 ], [ 0.011305, 0.011235, 0.6005 ]], [[-0.011305, 0.011305, 0.6005 ], [-0.011235, 0.011305, 0.6005 ], [-0.011165, 0.011305, 0.6005 ], ..., [ 0.011165, 0.011305, 0.6005 ], [ 0.011235, 0.011305, 0.6005 ], [ 0.011305, 0.011305, 0.6005 ]]]) - sample_position()vector_3_float64m[0. 0. 0.3185]
Values:
array([0. , 0. , 0.3185]) - source_position()vector_3_float64m[ 0. 0. -18.45]
Values:
array([ 0. , 0. , -18.45])
Values:
array([[[5.75354894e-06, 8.28653655e-06, 1.64289972e-05, ..., 4.93517828e-05, 4.85006207e-05, 5.91015809e-05], [4.42394156e-06, 9.01169249e-06, 1.74826858e-05, ..., 6.05294056e-05, 4.81401494e-05, 6.65695645e-05], [5.49048921e-06, 7.29207959e-06, 8.65354708e-06, ..., 5.53398574e-05, 5.71721295e-05, 5.51893764e-05], ..., [8.28232181e-06, 1.98830027e-05, 1.87816455e-05, ..., 4.59034754e-05, 3.86588871e-05, 4.62933973e-05], [1.39298369e-05, 1.58245652e-05, 1.90626037e-05, ..., 4.02639953e-05, 3.46938619e-05, 4.86108461e-05], [1.22659987e-05, 1.68256143e-05, 2.26036565e-05, ..., 4.62075950e-05, 3.31577227e-05, 5.72319427e-05]], [[9.10669303e-06, 1.33956617e-05, 2.17481652e-05, ..., 6.55749025e-05, 6.38721866e-05, 7.62063693e-05], [5.00541465e-06, 1.21906034e-05, 2.07247210e-05, ..., 7.77154419e-05, 6.88704176e-05, 7.49544823e-05], [6.61153818e-06, 8.44628977e-06, 1.48630181e-05, ..., 6.55332288e-05, 6.90374021e-05, 7.44088397e-05], ..., [1.26345281e-05, 3.20815845e-05, 3.16236600e-05, ..., 5.97712140e-05, 4.86027668e-05, 6.33246786e-05], [1.40900185e-05, 2.23139353e-05, 2.54270958e-05, ..., 4.59807768e-05, 4.53358314e-05, 5.98690743e-05], [1.51838314e-05, 2.67830266e-05, 3.01765935e-05, ..., 5.26456924e-05, 3.88541368e-05, 6.14190652e-05]], [[1.31519354e-05, 1.87751258e-05, 3.73011595e-05, ..., 7.93061309e-05, 7.47822374e-05, 9.57753009e-05], [8.30268513e-06, 1.61902381e-05, 2.52092119e-05, ..., 9.11714091e-05, 7.91221241e-05, 8.27758864e-05], [8.39172240e-06, 9.78746895e-06, 1.92528451e-05, ..., 8.00461542e-05, 8.93395282e-05, 7.32854747e-05], ..., [1.67801998e-05, 3.20928270e-05, 3.49616027e-05, ..., 6.61960990e-05, 6.34222715e-05, 7.16741958e-05], [2.11951250e-05, 3.25151501e-05, 3.85179116e-05, ..., 5.89540448e-05, 5.74189403e-05, 7.18301481e-05], [2.27122245e-05, 3.27706918e-05, 4.34845634e-05, ..., 6.93429345e-05, 5.25564886e-05, 7.94907739e-05]], ..., [[3.18760093e-05, 6.02389861e-05, 7.75950016e-05, ..., 1.35092446e-04, 1.31312365e-04, 1.61102608e-04], [2.45847228e-05, 4.33961056e-05, 6.78186815e-05, ..., 1.55086176e-04, 1.23564004e-04, 1.48072415e-04], [2.23279495e-05, 3.98398083e-05, 5.50599866e-05, ..., 1.24704771e-04, 1.49524759e-04, 1.38817780e-04], ..., [4.01609274e-05, 7.32010643e-05, 8.23171059e-05, ..., 1.13484220e-04, 1.03600360e-04, 1.16481461e-04], [4.97321780e-05, 6.53000488e-05, 7.54790068e-05, ..., 9.92377820e-05, 9.77720643e-05, 1.32349263e-04], [5.11775390e-05, 7.31362811e-05, 7.89525112e-05, ..., 1.10699772e-04, 8.91301611e-05, 1.60506445e-04]], [[3.69465842e-05, 5.13919905e-05, 7.86465148e-05, ..., 1.24313703e-04, 1.37399025e-04, 1.62210538e-04], [2.48263803e-05, 4.04913220e-05, 6.22016625e-05, ..., 1.52551813e-04, 1.34548725e-04, 1.68520735e-04], [2.74868317e-05, 3.68591357e-05, 5.92563362e-05, ..., 1.37265100e-04, 1.41022086e-04, 1.49924883e-04], ..., [3.94703696e-05, 7.66781433e-05, 8.44943303e-05, ..., 1.21886499e-04, 9.29041911e-05, 1.11730353e-04], [4.47872761e-05, 6.85657846e-05, 8.62121998e-05, ..., 9.87410602e-05, 1.04952023e-04, 1.30428646e-04], [5.24356153e-05, 7.88486410e-05, 8.38952378e-05, ..., 1.01205880e-04, 8.49701465e-05, 1.56350638e-04]], [[3.57427031e-05, 4.90562818e-05, 7.63148294e-05, ..., 1.28166500e-04, 1.37300934e-04, 1.65336502e-04], [2.65291628e-05, 3.62015660e-05, 6.91618169e-05, ..., 1.49913564e-04, 1.31882951e-04, 1.51620324e-04], [2.21894885e-05, 3.46267498e-05, 5.63735108e-05, ..., 1.27135092e-04, 1.32816240e-04, 1.39585130e-04], ..., [3.67748274e-05, 6.42844423e-05, 7.95763735e-05, ..., 1.15070377e-04, 9.13822162e-05, 1.10209879e-04], [4.41143843e-05, 7.41229024e-05, 8.50610889e-05, ..., 9.86093706e-05, 8.95594187e-05, 1.18879160e-04], [5.68321138e-05, 7.56233385e-05, 7.64968567e-05, ..., 1.16314091e-04, 8.53154950e-05, 1.33314671e-04]]])
Apply mean filter¶
[17]:
for key in wavelength:
wavelength[key].data = imaging.operations.mean_from_adj_pixels(wavelength[key].data)
[18]:
plot(wavelength["sample"])
Other visualizations¶
Show difference between sample and elastic¶
[19]:
plot(sc.sum(wavelength["sample"] - wavelength["sample_elastic"], 'wavelength'),
vmin=-0.002*sc.units.counts, vmax=0.002*sc.units.counts, cmap="RdBu")
Group detector pixels to increase signal to noise¶
[20]:
nbins=27
grouped = imaging.operations.groupby2D(wavelength, nx_target=nbins, ny_target=nbins)
for key, item in grouped.items():
item.masks["zero-counts"] = item.data == 0.0*sc.units.counts
del wavelength
[21]:
plot(grouped["sample"])
Normalization¶
[22]:
# Normalize by open beam
normalized = grouped / grouped["reference"]
del normalized["reference"]
summed = sc.nansum(sc.nansum(normalized, 'x'), 'y')
[23]:
plot(summed, grid=True, title='I/I0')
Data Analysis
scipp is built to be generic and flexible. In the following examples we utilise some basic crystallography, and a fitting library to fit Bragg edges to the reduced data.
This is not the same as having a purpose-built library for TOF Bragg edge analysis with encapuslated fitting and crystallographic knowledge.
The following examples are to illustrates the flexibility of scipp only.
Bragg edge fitting¶
We will first carry out Bragg-edge fitting on the sum of all counts in the sample.
Calculate expected Bragg edge positions¶
[24]:
def create_Braggedge_list(lattice_constant, miller_indices):
'''
:param miller-indices: like [(1,1,0),(2,0,0),...]
:type miller-indices: list of tuples
'''
coords = [str((h, k, l)) for h, k, l in miller_indices]
interplanar_distances = [
2. * lattice_constant / np.sqrt(h**2 + k**2 + l**2)
for h, k, l in miller_indices
]
d = sc.DataArray(
sc.array(dims=["bragg-edge"],
values=np.array(interplanar_distances),
unit=sc.units.angstrom))
d.coords["miller-indices"] = sc.array(dims=["bragg-edge"],
values=coords)
return d
[25]:
# Bragg edge position, in Angstrom, taken from COD entry 9008469
FCC_a = 3.5
# These miller indices for the given unit cell yield bragg edges
# between the maximum and minimum wavelength range.
indices_FCC = [(1, 1, 1), (2, 0, 0), (2, 2, 0), (3, 1, 1)]
Bragg_edges_FCC = create_Braggedge_list(FCC_a, indices_FCC)
sc.table(Bragg_edges_FCC)
Run the fitting (currently using Mantid under the hood)¶
[26]:
def fit(Bragg_edges_FCC, reference, quiet=False):
"""
Fit a list of Bragg edges using Mantid.
"""
x_min_sides = [0.05, 0.1, 0.1, 0.05]
x_max_sides = [0.1, 0.05, 0.1, 0.1]
fit_list = []
for edge_index in range(Bragg_edges_FCC.shape[0]):
bragg_edge = Bragg_edges_FCC.coords["miller-indices"]["bragg-edge",
edge_index]
# Initial guess
xpos_guess = Bragg_edges_FCC["bragg-edge", edge_index].value
x_min_fit = xpos_guess - xpos_guess * abs(x_min_sides[edge_index])
x_max_fit = xpos_guess + xpos_guess * abs(x_max_sides[edge_index])
if not quiet:
print(
"Now fitting Bragg edge {} at {:.3f} A (between {:.3f} A and {:.3f} A) across image groups"
.format(bragg_edge, xpos_guess, x_min_fit, x_max_fit))
# Call Mantid fitting
params_s, diff_s = sn.mantid.fit(
reference,
mantid_args={
'Function':
f'name=LinearBackground,A0={270},A1={-10};name=UserFunction,Formula=h*erf(a*(x-x0)),h={200},a={-11},x0={xpos_guess}',
'StartX': x_min_fit,
'EndX': x_max_fit
})
v_and_var_s = [
params_s.data['parameter', i]
for i in range(params_s['parameter', :].shape[0])
]
params = dict(zip(params_s.coords["parameter"].values, v_and_var_s))
fit_list.append(params)
return fit_list
[27]:
fit_params = fit(Bragg_edges_FCC, reference=summed["sample"])
Now fitting Bragg edge <scipp.Variable> () string [dimensionless] ["(1, 1, 1)"] at 4.041 A (between 3.839 A and 4.446 A) across image groups
Now fitting Bragg edge <scipp.Variable> () string [dimensionless] ["(2, 0, 0)"] at 3.500 A (between 3.150 A and 3.675 A) across image groups
Now fitting Bragg edge <scipp.Variable> () string [dimensionless] ["(2, 2, 0)"] at 2.475 A (between 2.227 A and 2.722 A) across image groups
Now fitting Bragg edge <scipp.Variable> () string [dimensionless] ["(3, 1, 1)"] at 2.111 A (between 2.005 A and 2.322 A) across image groups
[28]:
import scipy as sp
fig, ax = plt.subplots()
summed["sample"].plot(ax=ax)
for i, f in enumerate(fit_params):
x = np.linspace(f['f1.x0'].value - 0.3, f['f1.x0'].value + 0.3, 100)
y=f['f1.h'].value*sp.special.erf(f['f1.a'].value*(x-f['f1.x0'].value)) + (f['f0.A0'].value + f['f0.A1'].value*x)
ax.plot(x, y, color="C{}".format(i+1), label=Bragg_edges_FCC.coords['miller-indices'].values[i])
ax.legend()
fig
[28]:
Create a strain map¶
We can create a strain map by fitting the Bragg edges inside each tile of the image.
[29]:
# Make an empty container to receive the strain values
strain_map = sc.zeros_like(normalized["sample_elastic"]["wavelength", 0])
iprog = 0
step = 5
# Loop over all the tiles
for j in range(nbins):
for i in range(nbins):
prog = int(100 * (i + j*nbins) / (nbins*nbins))
if prog % step == 0 and prog == iprog:
print(prog, "% complete")
iprog += step
if sc.greater(sc.sum(normalized["sample_elastic"]['y', j]['x', i], "wavelength").data,
0.0*sc.units.one).value:
elastic_fit = fit(Bragg_edges_FCC,
reference=normalized["sample_elastic"]['y', j]['x', i], quiet=True)
strain_map['y', j]['x', i] = sc.values(0.5 * (elastic_fit[0]['f1.x0'] - fit_params[0]['f1.x0']))
0 % complete
5 % complete
10 % complete
15 % complete
20 % complete
25 % complete
30 % complete
35 % complete
40 % complete
45 % complete
50 % complete
55 % complete
60 % complete
65 % complete
70 % complete
75 % complete
80 % complete
85 % complete
90 % complete
95 % complete
[30]:
plot(strain_map, vmin=-0.02*sc.units.one, vmax=0.02*sc.units.one,
cmap="RdBu", title="Lattice strain $\epsilon$ (1, 1, 1)", resampling_mode='mean')