Coverage for install/scipp/scipy/signal/__init__.py: 100%
35 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
1# SPDX-License-Identifier: BSD-3-Clause
2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
3# @author Simon Heybrock
4"""Sub-package for signal processing such as smoothing.
6This subpackage provides wrappers for a subset of functions from
7:py:mod:`scipy.signal`.
8"""
10from dataclasses import dataclass
11from typing import Any
13import numpy.typing as npt
15from ...compat.wrapping import wrap1d
16from ...core import (
17 CoordError,
18 DataArray,
19 UnitError,
20 Variable,
21 array,
22 identical,
23 islinspace,
24 to_unit,
25)
26from ...units import one
29@dataclass
30class SOS:
31 """
32 Second-order sections representation returned by :py:func:`scipp.signal.butter`.
34 This is used as input to :py:func:`scipp.signal.sosfiltfilt`.
35 """
37 coord: Variable
38 sos: npt.NDArray[Any]
40 def filtfilt(self, obj: Variable | DataArray, dim: str, **kwargs: Any) -> DataArray:
41 """
42 Forwards to :py:func:`scipp.signal.sosfiltfilt` with sos argument set to the SOS
43 instance.
44 """
45 return sosfiltfilt(obj, dim=dim, sos=self, **kwargs)
48def _frequency(coord: Variable) -> Variable:
49 if not islinspace(coord).value:
50 raise CoordError("Data is not regularly sampled, cannot compute frequency.")
51 return (len(coord) - 1) / (coord[-1] - coord[0])
54def butter(coord: Variable, *, N: int, Wn: Variable, **kwargs: Any) -> SOS:
55 """
56 Butterworth digital and analog filter design.
58 Design an Nth-order digital or analog Butterworth filter and return the filter
59 coefficients.
61 This is intended for use with :py:func:`scipp.scipy.signal.sosfiltfilt`. See there
62 for an example.
64 This is a wrapper around :py:func:`scipy.signal.butter`. See there for a
65 complete description of parameters. The differences are:
67 - Instead of a sampling frequency fs, this wrapper takes a variable ``coord`` as
68 input. The sampling frequency is then computed from this coordinate. Only data
69 sampled at regular intervals are supported.
70 - The critical frequency or frequencies must be provided as a variable with correct
71 unit.
72 - Only 'sos' output is supported.
74 :seealso: :py:func:`scipp.scipy.signal.sosfiltfilt`
75 """
76 fs = _frequency(coord).value
77 try:
78 Wn = to_unit(Wn, one / coord.unit)
79 except UnitError:
80 raise UnitError(
81 f"Critical frequency unit '{Wn.unit}' incompatible with sampling unit "
82 f"'{one / coord.unit}'"
83 ) from None
84 import scipy.signal
86 return SOS(
87 coord=coord.copy(),
88 sos=scipy.signal.butter(N=N, Wn=Wn.values, fs=fs, output='sos', **kwargs),
89 )
92@wrap1d(keep_coords=True)
93def _sosfiltfilt(da: DataArray, dim: str, *, sos: SOS, **kwargs: Any) -> DataArray:
94 if not identical(da.coords[dim], sos.coord):
95 raise CoordError(
96 f"Coord\n{da.coords[dim]}\nof filter dimension '{dim}' does "
97 f"not match coord\n{sos.coord}\nused for creating the "
98 "second-order sections representation by "
99 "scipp.scipy.signal.butter."
100 )
101 import scipy.signal
103 data = array(
104 dims=da.dims,
105 unit=da.unit,
106 values=scipy.signal.sosfiltfilt(sos.sos, da.values, **kwargs),
107 )
108 return DataArray(data=data)
111def sosfiltfilt(
112 obj: Variable | DataArray, dim: str, *, sos: SOS, **kwargs: Any
113) -> DataArray:
114 """
115 A forward-backward digital filter using cascaded second-order sections.
117 This is a wrapper around :py:func:`scipy.signal.sosfiltfilt`. See there for a
118 complete description of parameters. The differences are:
120 - Instead of an array ``x`` and an optional axis, the input must be a data array
121 (or variable) and dimension label. If it is a variable, the coord used for setting
122 up the second-order sections is used as output coordinate.
123 - The array of second-order filter coefficients ``sos`` includes the coordinate
124 used for computing the frequency used for creating the coefficients. This is
125 compared to the corresponding coordinate of the input data array to ensure that
126 compatible coefficients are used.
128 Examples:
130 .. plot:: :context: close-figs
132 >>> from scipp.scipy.signal import butter, sosfiltfilt
133 >>> x = sc.linspace(dim='x', start=1.1, stop=4.0, num=1000, unit='m')
134 >>> y = sc.sin(x * sc.scalar(1.0, unit='rad/m'))
135 >>> y += sc.sin(x * sc.scalar(400.0, unit='rad/m'))
136 >>> da = sc.DataArray(data=y, coords={'x': x})
137 >>> sos = butter(da.coords['x'], N=4, Wn=20 / x.unit)
138 >>> out = sosfiltfilt(da, 'x', sos=sos)
139 >>> sc.plot({'input':da, 'sosfiltfilt':out})
141 Instead of calling sosfiltfilt the more convenient filtfilt method of
142 :py:class:`scipp.scipy.signal.SOS` can be used:
144 >>> out = butter(da.coords['x'], N=4, Wn=20 / x.unit).filtfilt(da, 'x')
145 """
146 da = (
147 obj
148 if isinstance(obj, DataArray)
149 else DataArray(data=obj, coords={dim: sos.coord})
150 )
151 return _sosfiltfilt(da, dim=dim, sos=sos, **kwargs)
154__all__ = ['butter', 'sosfiltfilt']