Coverage for install/scipp/utils/collapse_and_slices.py: 89%
36 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
1# SPDX-License-Identifier: BSD-3-Clause
2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
3# @author Neil Vaytet
5# Other imports
6import numpy as np
9def _to_slices(scipp_obj, slice_dims, slice_shape, volume):
10 # Create container to collect all 1D slices as 1D variables
11 all_slices = {}
13 # Go through the dims that need to be collapsed, and create an array that
14 # holds the range of indices for each dimension
15 # Say we have [Y, 5], and [Z, 3], then dim_list will contain
16 # [[0, 1, 2, 3, 4], [0, 1, 2]]
17 dim_list = [np.arange(slice_shape[dim], dtype=np.int32) for dim in slice_dims]
18 # Next create a grid of indices
19 # grid will contain
20 # [ [[0, 1, 2, 3, 4], [0, 1, 2, 3, 4], [0, 1, 2, 3, 4]],
21 # [[0, 0, 0, 0, 0], [1, 1, 1, 1, 1], [2, 2, 2, 2, 2]] ]
22 grid = np.meshgrid(*list(dim_list))
23 # Reshape the grid to have a 2D array of length volume, i.e.
24 # [ [0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4],
25 # [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] ]
26 res = np.reshape(grid, (len(slice_dims), volume))
27 # Now make a master array which also includes the dimension labels, i.e.
28 # [ [Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y, Y],
29 # [0, 1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2, 3, 4],
30 # [Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z, Z],
31 # [0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2] ]
32 slice_list = []
33 for i, dim in enumerate(slice_dims):
34 slice_list.append([dim] * volume)
35 slice_list.append(res[i])
36 # Finally reshape the master array to look like
37 # [ [[Y, 0], [Z, 0]], [[Y, 1], [Z, 0]],
38 # [[Y, 2], [Z, 0]], [[Y, 3], [Z, 0]],
39 # [[Y, 4], [Z, 0]], [[Y, 0], [Z, 1]],
40 # [[Y, 1], [Z, 1]], [[Y, 2], [Z, 1]],
41 # [[Y, 3], [Z, 1]],
42 # ...
43 # ]
44 slice_list = np.reshape(
45 np.transpose(np.array(slice_list, dtype=np.dtype('O'))),
46 (volume, len(slice_dims), 2),
47 )
49 # Extract each entry from the slice_list
50 for line in slice_list:
51 vslice = scipp_obj
52 key = ""
53 for s in line:
54 vslice = vslice[s[0], s[1]]
55 key += f"{s[0]}:{s[1]}-"
56 all_slices[key[:-1]] = vslice
58 return all_slices
61def collapse(scipp_obj, keep):
62 """
63 Slice down the input object until only the supplied `keep` dimension is
64 left (effectively 'collapsing' all but one dimension), and return a
65 `dict` of 1D slices. A common use for this is plotting spectra from
66 detectors where most pixels contain noise, but one specific channel
67 contains a strong signal. The `plot` function accepts a `dict` of data
68 arrays.
70 :param [scipp_obj]: Dataset or DataArray to be split into slices.
71 :type [scipp_obj]: Dataset or DataArray
72 :param [keep]: Dimension to be preserved.
73 :type [dim]: str
74 :return: A dictionary holding 1D slices of the input object.
75 :rtype: dict
76 """
78 dims = scipp_obj.dims
79 shape = scipp_obj.shape
81 # Gather list of dimensions that are to be collapsed
82 slice_dims = []
83 volume = 1
84 slice_shape = {}
85 for d, size in zip(dims, shape, strict=True):
86 if d != keep:
87 slice_dims.append(d)
88 slice_shape[d] = size
89 volume *= size
91 return _to_slices(scipp_obj, slice_dims, slice_shape, volume)
94def slices(scipp_obj, dim):
95 """
96 Slice input along given dim, and return all the slices in a `dict`.
98 :param [scipp_obj]: Dataset or DataArray to be split into slices.
99 :type [scipp_obj]: Dataset or DataArray
100 :param [dim]: Dimension along which to slice.
101 :type [dim]: str
102 :return: A dictionary holding slices of the input object.
103 :rtype: dict
104 """
106 slice_dims = [dim]
107 volume = scipp_obj.shape[scipp_obj.dims.index(dim)]
108 slice_shape = {dim: volume}
110 return _to_slices(scipp_obj, slice_dims, slice_shape, volume)