Coverage for install/scipp/scipy/ndimage/__init__.py: 94%

77 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-12-01 01:59 +0000

1# SPDX-License-Identifier: BSD-3-Clause 

2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp) 

3# @author Simon Heybrock 

4"""Sub-package for multidimensional image processing. 

5 

6This subpackage provides wrappers for a subset of functions from 

7:py:mod:`scipy.ndimage`. 

8""" 

9 

10from collections.abc import Callable, Mapping 

11from functools import wraps 

12from typing import Any, Protocol, TypeVar 

13 

14import scipy.ndimage 

15 

16from ...core import ( 

17 CoordError, 

18 DataArray, 

19 DimensionError, 

20 Variable, 

21 VariancesError, 

22 empty_like, 

23 islinspace, 

24 ones, 

25) 

26from ...typing import VariableLike 

27 

28_T = TypeVar('_T', Variable, DataArray) 

29 

30 

31def _ndfilter( 

32 func: Callable[..., _T], 

33) -> Callable[..., _T]: 

34 @wraps(func) 

35 def function(x: _T, **kwargs: Any) -> _T: 

36 if 'output' in kwargs: 

37 raise TypeError("The 'output' argument is not supported") 

38 if x.variances is not None: 

39 raise VariancesError( 

40 "Filter cannot be applied to input array with variances." 

41 ) 

42 if getattr(x, 'masks', None): 

43 raise ValueError("Filter cannot be applied to input array with masks.") 

44 return func(x, **kwargs) 

45 

46 return function 

47 

48 

49def _delta_to_positional( 

50 x: Any, 

51 dim: str, 

52 index: float | Variable | Mapping[str, float | Variable], 

53 dtype: type, 

54) -> Any: 

55 if not isinstance(index, Variable): 

56 return index 

57 coord = x.coords[dim] 

58 if not islinspace(coord, dim).value: 

59 raise CoordError( 

60 f"Data points not regularly spaced along {dim}. To ignore this, " 

61 f"provide a plain value (convertible to {dtype.__name__}) instead of a " 

62 "scalar variable. Note that this will correspond to plain positional " 

63 "indices/offsets." 

64 ) 

65 pos = (len(coord) - 1) * (index.to(unit=coord.unit) / (coord[-1] - coord[0])).value 

66 return dtype(pos) 

67 

68 

69def _require_matching_dims( 

70 index: Mapping[str, float | Variable], 

71 x: VariableLike, 

72 name: str | None, 

73) -> None: 

74 if set(index) != set(x.dims): 

75 raise KeyError( 

76 f"Data has dims={x.dims} but input argument '{name}' provides " 

77 f"values for {tuple(index)}" 

78 ) 

79 

80 

81def _positional_index( 

82 x: Any, 

83 index: float | Variable | Mapping[str, float | Variable], 

84 name: str | None = None, 

85 dtype: type = int, 

86) -> list[Any]: 

87 if not isinstance(index, Mapping): 

88 return [_delta_to_positional(x, dim, index, dtype=dtype) for dim in x.dims] 

89 _require_matching_dims(index, x, name) 

90 return [_delta_to_positional(x, dim, index[dim], dtype=dtype) for dim in x.dims] 

91 

92 

93@_ndfilter 

94def gaussian_filter( 

95 x: _T, 

96 /, 

97 *, 

98 sigma: float | Variable | Mapping[str, float | Variable], 

99 order: int | Mapping[str, int] | None = 0, 

100 **kwargs: Any, 

101) -> _T: 

102 """ 

103 Multidimensional Gaussian filter. 

104 

105 This is a wrapper around :py:func:`scipy.ndimage.gaussian_filter`. See there for 

106 full argument description. There are two key differences: 

107 

108 - This wrapper uses explicit dimension labels in the ``sigma`` and ``order`` 

109 arguments. For example, instead of ``sigma=[4, 6]`` use 

110 ``sigma={'time':4, 'space':6}`` 

111 (with appropriate dimension labels for the data). 

112 - Coordinate values can be used (and should be preferred) for ``sigma``. For 

113 example, instead of ``sigma=[4, 6]`` use 

114 ``sigma={'time':sc.scalar(5.0, unit='ms'), 'space':sc.scalar(1.2, unit='mm')}``. 

115 In this case it is required that the corresponding coordinates exist and form a 

116 "linspace", i.e., are evenly spaced. 

117 

118 Warning 

119 ------- 

120 If ``sigma`` is an integer or a mapping to integers then coordinate values are 

121 ignored. That is, the filter is applied even if the data points are not evenly 

122 spaced. The resulting filtered data may thus have no meaningful interpretation. 

123 

124 Parameters 

125 ---------- 

126 x: scipp.typing.VariableLike 

127 Input variable or data array. 

128 sigma: 

129 Standard deviation for Gaussian kernel. The standard deviations of the Gaussian 

130 filter are given as a mapping from dimension labels to numbers or scalar 

131 variables, or as a single number or scalar variable, in which case it is equal 

132 for all axes. 

133 order: 

134 The order of the filter along each dimension, given as mapping from dimension 

135 labels to integers, or as a single integer. An order of 0 corresponds to 

136 convolution with a Gaussian kernel. A positive order corresponds to convolution 

137 with that derivative of a Gaussian. 

138 

139 Returns 

140 ------- 

141 : scipp.typing.VariableLike 

142 Filtered variable or data array 

143 

144 Examples 

145 -------- 

146 

147 .. plot:: :context: close-figs 

148 

149 >>> from scipp.scipy.ndimage import gaussian_filter 

150 >>> da = sc.data.data_xy() 

151 >>> da.plot() 

152 

153 With sigma as integer: 

154 

155 .. plot:: :context: close-figs 

156 

157 >>> filtered = gaussian_filter(da, sigma=4) 

158 >>> filtered.plot() 

159 

160 With sigma based on input coordinate values: 

161 

162 .. plot:: :context: close-figs 

163 

164 >>> filtered = gaussian_filter(da, sigma=sc.scalar(0.1, unit='mm')) 

165 >>> filtered.plot() 

166 

167 With different sigma for different dimensions: 

168 

169 .. plot:: :context: close-figs 

170 

171 >>> filtered = gaussian_filter(da, sigma={'x':sc.scalar(0.01, unit='mm'), 

172 ... 'y':sc.scalar(1.0, unit='mm')}) 

173 >>> filtered.plot() 

174 """ 

175 sigma_values = _positional_index(x, sigma, name='sigma', dtype=float) 

176 if isinstance(order, Mapping): 

177 _require_matching_dims(order, x, 'order') 

178 order = [order[dim] for dim in x.dims] # type: ignore[assignment] 

179 out = empty_like(x) 

180 scipy.ndimage.gaussian_filter( 

181 x.values, sigma=sigma_values, order=order, output=out.values, **kwargs 

182 ) 

183 return out 

184 

185 

186def _make_footprint( 

187 x: Variable | DataArray, 

188 size: int | Variable | Mapping[str, int | Variable] | None, 

189 footprint: Variable | None, 

190) -> Variable: 

191 if footprint is None: 

192 if size is None: 

193 raise ValueError("Provide either 'footprint' or 'size'.") 

194 footprint = ones( 

195 dims=x.dims, shape=_positional_index(x, size, name='size'), dtype='bool' 

196 ) 

197 else: 

198 if size is not None: 

199 raise ValueError("Provide either 'size' or 'footprint', not both.") 

200 if set(footprint.dims) != set(x.dims): 

201 raise DimensionError( 

202 f"Dimensions {footprint.dims} must match data dimensions {x.dim}" 

203 ) 

204 return footprint 

205 

206 

207class _FootprintFilter(Protocol): 

208 def __call__( 

209 self, 

210 x: _T, 

211 /, 

212 *, 

213 size: int | Variable | Mapping[str, int | Variable] | None = None, 

214 footprint: Variable | None = None, 

215 origin: int | Variable | Mapping[str, int | Variable] | None = 0, 

216 **kwargs: Any, 

217 ) -> _T: ... 

218 

219 

220def _make_footprint_filter( 

221 name: str, example: bool = True, extra_args: str = '' 

222) -> _FootprintFilter: 

223 def footprint_filter( 

224 x: _T, 

225 /, 

226 *, 

227 size: int | Variable | Mapping[str, int | Variable] | None = None, 

228 footprint: Variable | None = None, 

229 origin: int | Variable | Mapping[str, int | Variable] = 0, 

230 **kwargs: Any, 

231 ) -> _T: 

232 footprint = _make_footprint(x, size=size, footprint=footprint) 

233 out = empty_like(x) 

234 scipy_filter = getattr(scipy.ndimage, name) 

235 scipy_filter( 

236 x.values, 

237 footprint=footprint.values, 

238 origin=_positional_index(x, origin, name='origin'), 

239 output=out.values, 

240 **kwargs, 

241 ) 

242 return out 

243 

244 footprint_filter.__name__ = name 

245 if extra_args: 

246 extra_args = f', {extra_args}' 

247 doc = f""" 

248 Calculate a multidimensional {name.replace('_', ' ')}. 

249 

250 This is a wrapper around :py:func:`scipy.ndimage.{name}`. See there for full 

251 argument description. There are two key differences: 

252 

253 - This wrapper uses explicit dimension labels in the ``size``, ``footprint``, and 

254 ``origin`` arguments. For example, instead of ``size=[4, 6]`` use 

255 ``size={{'time':4, 'space':6}}`` (with appropriate dimension labels for the data). 

256 - Coordinate values can be used (and should be preferred) for ``size`` and 

257 ``origin``. For example, instead of ``size=[4, 6]`` use 

258 ``size={{'time':sc.scalar(5.0, unit='ms'), 'space':sc.scalar(1.2, unit='mm')}}``. 

259 In this case it is required that the corresponding coordinates exist and form a 

260 "linspace", i.e., are evenly spaced. 

261 

262 Warning 

263 ------- 

264 When ``size`` is an integer or a mapping to integers or when ``footprint`` is 

265 given, coordinate values are ignored. That is, the filter is applied even if the 

266 data points are not evenly spaced. The resulting filtered data may thus have no 

267 meaningful interpretation. 

268 

269 Parameters 

270 ---------- 

271 x: scipp.typing.VariableLike 

272 Input variable or data array. 

273 size: 

274 Integer or scalar variable or mapping from dimension labels to integers or 

275 scalar variables. Defines the footprint (see below). 

276 footprint: 

277 Variable with same dimension labels (but different shape) as the input data. 

278 The boolean values specify (implicitly) a shape, but also which of the elements 

279 within this shape will get passed to the filter function. 

280 origin: 

281 Integer or scalar variable or mapping from dimension labels to integers or 

282 scalar variables. Controls the placement of the filter on the input array. 

283 

284 Returns 

285 ------- 

286 : scipp.typing.VariableLike 

287 Filtered variable or data array 

288 """ 

289 if example: 

290 doc += f""" 

291 Examples 

292 -------- 

293 

294 .. plot:: :context: close-figs 

295 

296 >>> from scipp.scipy.ndimage import {name} 

297 >>> da = sc.data.data_xy() 

298 >>> da.plot() 

299 

300 With size as integer: 

301 

302 .. plot:: :context: close-figs 

303 

304 >>> filtered = {name}(da, size=4{extra_args}) 

305 >>> filtered.plot() 

306 

307 With size based on input coordinate values: 

308 

309 .. plot:: :context: close-figs 

310 

311 >>> filtered = {name}(da, size=sc.scalar(0.2, unit='mm'){extra_args}) 

312 >>> filtered.plot() 

313 

314 With different size for different dimensions: 

315 

316 .. plot:: :context: close-figs 

317 

318 >>> filtered = {name}(da, size={{'x':sc.scalar(0.2, unit='mm'), 

319 ... {' ' * len(name)}'y':sc.scalar(1.1, unit='mm')}}{extra_args}) 

320 >>> filtered.plot() 

321 """ # noqa: E501 

322 footprint_filter.__doc__ = doc 

323 return _ndfilter(footprint_filter) 

324 

325 

326generic_filter = _make_footprint_filter('generic_filter', example=False) 

327maximum_filter = _make_footprint_filter('maximum_filter') 

328median_filter = _make_footprint_filter('median_filter') 

329minimum_filter = _make_footprint_filter('minimum_filter') 

330percentile_filter = _make_footprint_filter( 

331 'percentile_filter', extra_args='percentile=80' 

332) 

333rank_filter = _make_footprint_filter('rank_filter', extra_args='rank=3') 

334 

335__all__ = [ 

336 'gaussian_filter', 

337 'generic_filter', 

338 'maximum_filter', 

339 'median_filter', 

340 'minimum_filter', 

341 'percentile_filter', 

342 'rank_filter', 

343]