Coverage for install/scipp/data/__init__.py: 27%
41 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
1# SPDX-License-Identifier: BSD-3-Clause
2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
3# @author Simon Heybrock
4from functools import lru_cache
5from typing import Any
7from ..core import DataArray, DataGroup, Variable, array, linspace, ones
8from ..io import load_hdf5
9from ..typing import DTypeLike
11_version = '2'
14@lru_cache(maxsize=1)
15def _get_pooch() -> Any:
16 try:
17 import pooch
18 except ImportError as err:
19 raise ImportError(
20 '''pooch is not installed.
21It is required to use Scipp's bundled data files.
23Please install pooch either using conda:
24 conda install pooch
25or using pip:
26 python -m pip install pooch
27or install all optional components of Scipp:
28 python -m pip install scipp[all]
29'''
30 ) from err
32 return pooch.create(
33 path=pooch.os_cache('scipp'),
34 env='SCIPP_DATA_DIR',
35 retry_if_failed=3,
36 base_url='https://public.esss.dk/groups/scipp/scipp/{version}/',
37 version=_version,
38 registry={
39 'rhessi_flares.h5': 'md5:b4fdc9508c6d1d7aab1c6ebdd13956f2',
40 'VULCAN_221040_processed.h5': 'md5:626484b95372d3341b156dc2012722f9',
41 },
42 )
45def get_path(name: str) -> str:
46 """
47 Return the path to a data file bundled with Scipp.
49 This function only works with example data and cannot handle
50 paths to custom files.
51 """
52 return _get_pooch().fetch(name) # type: ignore[no-any-return]
55def rhessi_flares() -> str:
56 """
57 Return the path to the list of solar flares recorded by RHESSI
58 in Scipp's HDF5 format.
60 The original is
61 https://hesperia.gsfc.nasa.gov/rhessi3/data-access/rhessi-data/flare-list/index.html
63 Attention
64 ---------
65 This data has been manipulated!
66 """
67 return get_path('rhessi_flares.h5')
70def vulcan_steel_strain_data() -> DataGroup:
71 return load_hdf5(get_path('VULCAN_221040_processed.h5')) # type: ignore[return-value]
74def table_xyz(
75 nrow: int, coord_max: float | None = None, coord_dtype: DTypeLike | None = None
76) -> DataArray:
77 """
78 Return a 1-D data array ("table") with x, y, and z coord columns.
79 """
80 from numpy.random import default_rng
82 rng = default_rng(seed=1234)
84 def random_coordinate() -> Variable:
85 return array(
86 dims=['row'],
87 unit='m',
88 values=(
89 rng.random(nrow) if coord_max is None else rng.random(nrow) * coord_max
90 ),
91 dtype=coord_dtype,
92 )
94 x = random_coordinate()
95 y = random_coordinate()
96 z = random_coordinate()
97 data = ones(dims=['row'], unit='K', shape=[nrow])
98 data.values += 0.1 * rng.random(nrow)
99 return DataArray(data=data, coords={'x': x, 'y': y, 'z': z})
102def binned_x(nevent: int, nbin: int) -> DataArray:
103 """
104 Return data array binned along 1 dimension.
105 """
106 return table_xyz(nevent).bin(x=nbin)
109def binned_xy(nevent: int, nx: int, ny: int) -> DataArray:
110 """
111 Return data array binned along 2 dimensions.
112 """
113 return table_xyz(nevent).bin(x=nx, y=ny)
116def data_xy() -> DataArray:
117 from numpy.random import default_rng
119 rng = default_rng(seed=1234)
120 da = DataArray(array(dims=['x', 'y'], values=rng.random((100, 100))))
121 da.coords['x'] = linspace('x', 0.0, 1.0, num=100, unit='mm')
122 da.coords['y'] = linspace('y', 0.0, 5.0, num=100, unit='mm')
123 return da