Coverage for install/scipp/core/reduction.py: 64%
110 statements
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
« prev ^ index » next coverage.py v7.6.1, created at 2024-12-01 01:59 +0000
1# SPDX-License-Identifier: BSD-3-Clause
2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
3# @author Simon Heybrock
5from __future__ import annotations
7from collections.abc import Callable
8from typing import Any, NoReturn, cast
10import numpy as np
11import numpy.typing as npt
13from .._scipp import core as _cpp
14from ..typing import Dims, VariableLike, VariableLikeType
15from . import concepts
16from ._cpp_wrapper_util import call_func as _call_cpp_func
17from .cpp_classes import (
18 DataArray,
19 Dataset,
20 DimensionError,
21 DTypeError,
22 Unit,
23 Variable,
24 VariancesError,
25)
26from .data_group import DataGroup, data_group_nary
27from .variable import array
30def mean(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
31 """Arithmetic mean of elements in the input.
33 If the input has variances, the variances stored in the output are based on
34 the "standard deviation of the mean", i.e.,
35 :math:`\\sigma_{mean} = \\sigma / \\sqrt{N}`.
36 :math:`N` is the length of the input dimension.
37 :math:`\\sigma` is estimated as the average of the standard deviations of
38 the input elements along that dimension.
40 See :py:func:`scipp.sum` on how rounding errors for float32 inputs are handled.
42 Parameters
43 ----------
44 x: scipp.typing.VariableLike
45 Input data.
46 dim:
47 Dimension along which to calculate the mean. If not
48 given, the mean over all dimensions is calculated.
50 Returns
51 -------
52 : Same type as x
53 The mean of the input values.
55 See Also
56 --------
57 scipp.var:
58 Compute the variance.
59 scipp.std:
60 Compute the standard deviation.
61 scipp.nanmean:
62 Ignore NaN's when calculating the mean.
63 """
64 if dim is None:
65 return _call_cpp_func(_cpp.mean, x) # type: ignore[return-value]
66 else:
67 return _call_cpp_func(_cpp.mean, x, dim=dim) # type: ignore[return-value]
70def nanmean(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
71 """Arithmetic mean of elements in the input ignoring NaN's.
73 If the input has variances, the variances stored in the output are based on
74 the "standard deviation of the mean", i.e.,
75 :math:`\\sigma_{mean} = \\sigma / \\sqrt{N}`.
76 :math:`N` is the length of the input dimension.
77 :math:`\\sigma` is estimated as the average of the standard deviations of
78 the input elements along that dimension.
80 See :py:func:`scipp.sum` on how rounding errors for float32 inputs are handled.
82 Parameters
83 ----------
84 x: scipp.typing.VariableLike
85 Input data.
86 dim:
87 Dimension along which to calculate the mean. If not
88 given, the nanmean over all dimensions is calculated.
90 Returns
91 -------
92 : Same type as x
93 The mean of the input values which are not NaN.
95 See Also
96 --------
97 scipp.nanvar:
98 Compute the variance, ignoring NaN's.
99 scipp.nanstd:
100 Compute the standard deviation, ignoring NaN's.
101 scipp.mean:
102 Compute the mean without special handling of NaN.
103 """
104 if dim is None:
105 return _call_cpp_func(_cpp.nanmean, x) # type: ignore[return-value]
106 else:
107 return _call_cpp_func(_cpp.nanmean, x, dim=dim) # type: ignore[return-value]
110def median(x: VariableLikeType, dim: Dims = None) -> VariableLikeType:
111 """Compute the median of the input values.
113 The median is the middle value of a sorted copy of the input array
114 along each reduced dimension.
115 That is, for an array of ``N`` unmasked values, the median is
117 - odd ``N``: ``x[(N-1)/2]``
118 - even ``N``: ``(x[N/2-1] + x[N/2]) / 2``
120 Note
121 ----
122 Masks are broadcast to the shape of ``x``.
123 This can lead to a large temporary memory usage.
125 Parameters
126 ----------
127 x: scipp.typing.VariableLike
128 Input data.
129 dim:
130 Dimension(s) along which to calculate the median.
131 If not given, the median over a flattened version of the array is calculated.
133 Returns
134 -------
135 : Same type as x
136 The median of the input values.
138 Raises
139 ------
140 scipp.VariancesError
141 If the input has variances.
142 scipp.DTypeError
143 If the input is binned or does otherwise not support computing medians.
145 See Also
146 --------
147 scipp.nanmedian:
148 Ignore NaN's when calculating the median.
150 Examples
151 --------
152 ``median`` is available as a method:
154 >>> x = sc.array(dims=['x'], values=[2, 5, 1, 8, 4])
155 >>> x.median()
156 <scipp.Variable> () float64 [dimensionless] 4
157 >>> x = sc.array(dims=['x'], values=[2, 5, 1, 8])
158 >>> x.median()
159 <scipp.Variable> () float64 [dimensionless] 3.5
161 The median can be computed along a given dimension:
163 >>> x = sc.array(dims=['x', 'y'], values=[[1, 3, 6], [2, 7, 4]])
164 >>> x.median('y')
165 <scipp.Variable> (x: 2) float64 [dimensionless] [3, 4]
167 Masked elements are ignored:
169 >>> x = sc.DataArray(
170 ... sc.array(dims=['x'], values=[5, 3, 4, 3]),
171 ... masks={'m': sc.array(dims=['x'], values=[False, True, False, False])}
172 ... )
173 >>> x.median()
174 <scipp.DataArray>
175 Dimensions: Sizes[]
176 Data:
177 float64 [dimensionless] () 4
178 """
179 r = _reduce_with_numpy(
180 x,
181 dim=dim,
182 sc_func=cast(Callable[..., VariableLike], median),
183 np_func=np.median,
184 np_ma_func=np.ma.median,
185 unit_func=lambda u: u,
186 kwargs={},
187 )
188 return r
191def nanmedian(x: VariableLikeType, dim: Dims = None) -> VariableLikeType:
192 """Compute the median of the input values ignoring NaN's.
194 The median is the middle value of a sorted copy of the input array
195 along each reduced dimension.
196 That is, for an array of ``N`` unmasked, non-NaN values, the median is
198 - odd ``N``: ``x[(N-1)/2]``
199 - even ``N``: ``(x[N/2-1] + x[N/2]) / 2``
201 Parameters
202 ----------
203 x: scipp.typing.VariableLike
204 Input data.
205 dim:
206 Dimension(s) along which to calculate the median.
207 If not given, the median over a flattened version of the array is calculated.
209 Returns
210 -------
211 : Same type as x
212 The median of the input values.
214 Raises
215 ------
216 scipp.VariancesError
217 If the input has variances.
218 scipp.DTypeError
219 If the input is binned or does otherwise not support computing medians.
220 ValueError
221 If the input has masks.
222 Mask out NaN's and then use :func:`scipp.median` instead.
224 See Also
225 --------
226 scipp.median:
227 Compute the median without special handling of NaN's.
229 Examples
230 --------
231 ``nanmedian`` is available as a method:
233 >>> x = sc.array(dims=['x'], values=[2, 5, 1, np.nan, 8, 4])
234 >>> x.nanmedian()
235 <scipp.Variable> () float64 [dimensionless] 4
236 >>> x = sc.array(dims=['x'], values=[2, np.nan, 5, 1, 8])
237 >>> x.nanmedian()
238 <scipp.Variable> () float64 [dimensionless] 3.5
239 """
241 def _catch_masked(*args: object, **kwargs: object) -> NoReturn:
242 # Because there is no np.ma.nanmedian
243 raise ValueError(
244 'nanmedian does not support masked data arrays. '
245 'Consider masking NaN values and calling scipp.median'
246 )
248 return _reduce_with_numpy(
249 x,
250 dim=dim,
251 sc_func=cast(Callable[..., VariableLike], nanmedian),
252 np_func=np.nanmedian,
253 np_ma_func=_catch_masked,
254 unit_func=lambda u: u,
255 kwargs={},
256 )
259def var(x: VariableLikeType, dim: Dims = None, *, ddof: int) -> VariableLikeType:
260 r"""Compute the variance of the input values.
262 This function computes the variance of the input values which is *not*
263 the same as the ``x.variances`` property but instead defined as
265 .. math::
267 \mathsf{var}(x) = \frac1{N - \mathsf{ddof}}
268 \sum_{i=1}^{N}\, {(x_i - \bar{x})}^2
270 where :math:`x_i` are the unmasked ``values`` of the input and
271 :math:`\bar{x}` is the mean, see :func:`scipp.mean`.
272 See the ``ddof`` parameter description for what value to choose.
274 Note
275 ----
276 Masks are broadcast to the shape of ``x``.
277 This can lead to a large temporary memory usage.
279 Parameters
280 ----------
281 x: scipp.typing.VariableLike
282 Input data.
283 dim:
284 Dimension(s) along which to calculate the variance.
285 If not given, the variance over a flattened version of the array is calculated.
286 ddof:
287 'Delta degrees of freedom'.
288 For sample variances, set ``ddof=1`` to obtain an unbiased estimator.
289 For normally distributed variables, set ``ddof=0`` to obtain a maximum
290 likelihood estimate.
291 See :func:`numpy.var` for more details.
293 In contrast to NumPy, this is a required parameter in Scipp to
294 avoid potentially hard-to-find mistakes based on implicit assumptions
295 about what the input data represents.
297 Returns
298 -------
299 : Same type as x
300 The variance of the input values.
302 Raises
303 ------
304 scipp.VariancesError
305 If the input has variances.
306 scipp.DTypeError
307 If the input is binned or does otherwise not support computing variances.
309 See Also
310 --------
311 scipp.variances:
312 Extract the stored variances of a :class:`scipp.Variable`.
313 scipp.mean:
314 Compute the arithmetic mean.
315 scipp.std:
316 Compute the standard deviation.
317 scipp.nanvar:
318 Ignore NaN's when calculating the variance.
320 Examples
321 --------
322 ``var`` is available as a method:
324 >>> x = sc.array(dims=['x'], values=[3, 5, 2, 3])
325 >>> x.var(ddof=0)
326 <scipp.Variable> () float64 [dimensionless] 1.1875
327 >>> x.var(ddof=1)
328 <scipp.Variable> () float64 [dimensionless] 1.58333
330 Select a dimension to reduce:
332 >>> x = sc.array(dims=['x', 'y'], values=[[1, 3, 6], [2, 7, 4]])
333 >>> x.var('y', ddof=0)
334 <scipp.Variable> (x: 2) float64 [dimensionless] [4.22222, 4.22222]
335 >>> x.var('x', ddof=0)
336 <scipp.Variable> (y: 3) float64 [dimensionless] [0.25, 4, 1]
337 """
338 return _reduce_with_numpy(
339 x,
340 dim=dim,
341 sc_func=cast(Callable[..., VariableLike], var),
342 np_func=np.var,
343 np_ma_func=np.ma.var,
344 unit_func=lambda u: u**2,
345 kwargs={'ddof': ddof},
346 )
349def nanvar(x: VariableLikeType, dim: Dims = None, *, ddof: int) -> VariableLikeType:
350 r"""Compute the variance of the input values ignoring NaN's.
352 This function computes the variance of the input values which is *not*
353 the same as the ``x.variances`` property but instead defined as
355 .. math::
357 \mathsf{nanvar}(x) = \frac1{N - \mathsf{ddof}}
358 \sum_{i=1}^{N}\, {(x_i - \bar{x})}^2
360 where :math:`x_i` are the non-NaN ``values`` of the input and
361 :math:`\bar{x}` is the mean, see :func:`scipp.nanmean`.
362 See the ``ddof`` parameter description for what value to choose.
364 Parameters
365 ----------
366 x: scipp.typing.VariableLike
367 Input data.
368 dim:
369 Dimension(s) along which to calculate the variance.
370 If not given, the variance over a flattened version of the array is calculated.
371 ddof:
372 'Delta degrees of freedom'.
373 For sample variances, set ``ddof=1`` to obtain an unbiased estimator.
374 For normally distributed variables, set ``ddof=0`` to obtain a maximum
375 likelihood estimate.
376 See :func:`numpy.nanvar` for more details.
378 In contrast to NumPy, this is a required parameter in Scipp to
379 avoid potentially hard-to-find mistakes based on implicit assumptions
380 about what the input data represents.
382 Returns
383 -------
384 : Same type as x
385 The variance of the non-NaN input values.
387 Raises
388 ------
389 scipp.VariancesError
390 If the input has variances.
391 scipp.DTypeError
392 If the input is binned or does otherwise not support computing variances.
393 ValueError
394 If the input has masks.
395 Mask out NaN's and then use :func:`scipp.var` instead.
397 See Also
398 --------
399 scipp.nanmean:
400 Compute the arithmetic mean ignoring NaN's.
401 scipp.nanstd:
402 Compute the standard deviation, ignoring NaN's.
403 scipp.var:
404 Compute the variance without special handling of NaN's.
406 Examples
407 --------
408 ``nanvar`` is available as a method:
410 >>> x = sc.array(dims=['x'], values=[np.nan, 5, 2, 3])
411 >>> x.nanvar(ddof=0)
412 <scipp.Variable> () float64 [dimensionless] 1.55556
413 >>> x.nanvar(ddof=1)
414 <scipp.Variable> () float64 [dimensionless] 2.33333
415 """
417 def _catch_masked(*args: object, **kwargs: object) -> NoReturn:
418 # Because there is no np.ma.nanvar
419 raise ValueError(
420 'nanvar does not support masked data arrays. '
421 'Consider masking NaN values and calling scipp.var'
422 )
424 return _reduce_with_numpy(
425 x,
426 dim=dim,
427 sc_func=cast(Callable[..., VariableLike], nanvar),
428 np_func=np.nanvar,
429 np_ma_func=_catch_masked,
430 unit_func=lambda u: u**2,
431 kwargs={'ddof': ddof},
432 )
435def std(x: VariableLikeType, dim: Dims = None, *, ddof: int) -> VariableLikeType:
436 r"""Compute the standard deviation of the input values.
438 This function computes the standard deviation of the input values which is *not*
439 related to the ``x.variances`` property but instead defined as
441 .. math::
443 \mathsf{std}(x)^2 = \frac1{N - \mathsf{ddof}}
444 \sum_{i=1}^{N}\, {(x_i - \bar{x})}^2
446 where :math:`x_i` are the unmasked ``values`` of the input and
447 :math:`\bar{x}` is the mean, see :func:`scipp.mean`.
448 See the ``ddof`` parameter description for what value to choose.
450 Note
451 ----
452 Masks are broadcast to the shape of ``x``.
453 This can lead to a large temporary memory usage.
455 Parameters
456 ----------
457 x: scipp.typing.VariableLike
458 Input data.
459 dim:
460 Dimension(s) along which to calculate the standard deviation.
461 If not given, the standard deviation over a flattened version
462 of the array is calculated.
463 ddof:
464 'Delta degrees of freedom'.
465 For sample standard deviations, set ``ddof=1`` to obtain an unbiased estimator.
466 For normally distributed variables, set ``ddof=0`` to obtain a maximum
467 likelihood estimate.
468 See :func:`numpy.std` for more details.
470 In contrast to NumPy, this is a required parameter in Scipp to
471 avoid potentially hard-to-find mistakes based on implicit assumptions
472 about what the input data represents.
474 Returns
475 -------
476 : Same type as x
477 The standard deviation of the input values.
479 Raises
480 ------
481 scipp.VariancesError
482 If the input has variances.
483 scipp.DTypeError
484 If the input is binned or does
485 otherwise not support computing standard deviations.
487 See Also
488 --------
489 scipp.stddevs:
490 Compute the standard deviations from the stored
491 variances of a :class:`scipp.Variable`.
492 scipp.mean:
493 Compute the arithmetic mean.
494 scipp.var:
495 Compute the variance.
496 scipp.nanstd:
497 Ignore NaN's when calculating the standard deviation.
499 Examples
500 --------
501 ``std`` is available as a method:
503 >>> x = sc.array(dims=['x'], values=[3, 5, 2, 3])
504 >>> x.std(ddof=0)
505 <scipp.Variable> () float64 [dimensionless] 1.08972
506 >>> x.std(ddof=1)
507 <scipp.Variable> () float64 [dimensionless] 1.25831
509 Select a dimension to reduce:
511 >>> x = sc.array(dims=['x', 'y'], values=[[1, 3, 6], [2, 7, 4]])
512 >>> x.std('y', ddof=0)
513 <scipp.Variable> (x: 2) float64 [dimensionless] [2.0548, 2.0548]
514 >>> x.std('x', ddof=0)
515 <scipp.Variable> (y: 3) float64 [dimensionless] [0.5, 2, 1]
516 """
517 return _reduce_with_numpy(
518 x,
519 dim=dim,
520 sc_func=cast(Callable[..., VariableLike], std),
521 np_func=np.std,
522 np_ma_func=np.ma.std,
523 unit_func=lambda u: u,
524 kwargs={'ddof': ddof},
525 )
528def nanstd(x: VariableLikeType, dim: Dims = None, *, ddof: int) -> VariableLikeType:
529 r"""Compute the standard deviation of the input values ignoring NaN's.
531 This function computes the standard deviation of the input values which is *not*
532 related to the ``x.variances`` property but instead defined as
534 .. math::
536 \mathsf{nanstd}(x)^2 = \frac1{N - \mathsf{ddof}}
537 \sum_{i=1}^{N}\, {(x_i - \bar{x})}^2
539 where :math:`x_i` are the non-NaN ``values`` of the input and
540 :math:`\bar{x}` is the mean, see :func:`scipp.nanmean`.
541 See the ``ddof`` parameter description for what value to choose.
543 Parameters
544 ----------
545 x: scipp.typing.VariableLike
546 Input data.
547 dim:
548 Dimension(s) along which to calculate the standard deviation.
549 If not given, the standard deviation over a flattened version
550 of the array is calculated.
551 ddof:
552 'Delta degrees of freedom'.
553 For sample standard deviations, set ``ddof=1`` to obtain an unbiased estimator.
554 For normally distributed variables, set ``ddof=0`` to obtain a maximum
555 likelihood estimate.
556 See :func:`numpy.nanstd` for more details.
558 In contrast to NumPy, this is a required parameter in Scipp to
559 avoid potentially hard-to-find mistakes based on implicit assumptions
560 about what the input data represents.
562 Returns
563 -------
564 : Same type as x
565 The standard deviation of the input values.
567 Raises
568 ------
569 scipp.VariancesError
570 If the input has variances.
571 scipp.DTypeError
572 If the input is binned or does
573 otherwise not support computing standard deviations.
574 ValueError
575 If the input has masks.
576 Mask out NaN's and then use :func:`scipp.std` instead.
578 See Also
579 --------
580 scipp.nanmean:
581 Compute the arithmetic mean ignoring NaN's.
582 scipp.nanvar:
583 Compute the variance, ignoring NaN's.
584 scipp.std:
585 Compute the standard deviation without special handling of NaN's.
587 Examples
588 --------
589 ``nanstd`` is available as a method:
591 >>> x = sc.array(dims=['x'], values=[np.nan, 5, 2, 3])
592 >>> x.nanstd(ddof=0)
593 <scipp.Variable> () float64 [dimensionless] 1.24722
594 >>> x.nanstd(ddof=1)
595 <scipp.Variable> () float64 [dimensionless] 1.52753
596 """
598 def _catch_masked(*args: object, **kwargs: object) -> NoReturn:
599 # Because there is no np.ma.nanstd
600 raise ValueError(
601 'nanstd does not support masked data arrays. '
602 'Consider masking NaN values and calling scipp.std'
603 )
605 return _reduce_with_numpy(
606 x,
607 dim=dim,
608 sc_func=cast(Callable[..., VariableLike], nanstd),
609 np_func=np.nanstd,
610 np_ma_func=_catch_masked,
611 unit_func=lambda u: u,
612 kwargs={'ddof': ddof},
613 )
616def sum(x: VariableLikeType, dim: Dims = None) -> VariableLikeType:
617 """Sum of elements in the input.
619 If the input data is in single precision (dtype='float32') this internally uses
620 double precision (dtype='float64') to reduce the effect of accumulated rounding
621 errors. If multiple dimensions are reduced, the current implementation casts back
622 to float32 after handling each dimension, i.e., the result is equivalent to what
623 would be obtained from manually summing individual dimensions.
625 Parameters
626 ----------
627 x: scipp.typing.VariableLike
628 Input data.
629 dim:
630 Optional dimension along which to calculate the sum. If not
631 given, the sum over all dimensions is calculated.
633 Returns
634 -------
635 : Same type as x
636 The sum of the input values.
638 See Also
639 --------
640 scipp.nansum:
641 Ignore NaN's when calculating the sum.
642 """
643 if dim is None:
644 return _call_cpp_func(_cpp.sum, x) # type: ignore[return-value]
645 elif isinstance(dim, str):
646 return _call_cpp_func(_cpp.sum, x, dim=dim) # type: ignore[return-value]
647 for d in dim:
648 x = _call_cpp_func(_cpp.sum, x, d) # type: ignore[assignment]
649 return x
652def nansum(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
653 """Sum of elements in the input ignoring NaN's.
655 See :py:func:`scipp.sum` on how rounding errors for float32 inputs are handled.
657 Parameters
658 ----------
659 x: scipp.typing.VariableLike
660 Input data.
661 dim:
662 Optional dimension along which to calculate the sum. If not
663 given, the sum over all dimensions is calculated.
665 Returns
666 -------
667 : Same type as x
668 The sum of the input values which are not NaN.
670 See Also
671 --------
672 scipp.sum:
673 Compute the sum without special handling of NaN.
674 """
675 if dim is None:
676 return _call_cpp_func(_cpp.nansum, x) # type: ignore[return-value]
677 else:
678 return _call_cpp_func(_cpp.nansum, x, dim=dim) # type: ignore[return-value]
681def min(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
682 """Minimum of elements in the input.
684 Warning
685 -------
687 Scipp returns DBL_MAX or INT_MAX for empty inputs of float or int dtype,
688 respectively, while NumPy raises. Note that in the case of :py:class:`DataArray`,
689 inputs can also be "empty" if all elements contributing to an output element are
690 masked.
692 Parameters
693 ----------
694 x: scipp.typing.VariableLike
695 Input data.
696 dim:
697 Optional dimension along which to calculate the min. If not
698 given, the min over all dimensions is calculated.
700 Returns
701 -------
702 :
703 The minimum of the input values.
705 See Also
706 --------
707 scipp.max:
708 Element-wise maximum.
709 scipp.nanmin:
710 Same as min but ignoring NaN's.
711 scipp.nanmax:
712 Same as max but ignoring NaN's.
713 """
714 if dim is None:
715 return _call_cpp_func(_cpp.min, x) # type: ignore[return-value]
716 else:
717 return _call_cpp_func(_cpp.min, x, dim=dim) # type: ignore[return-value]
720def max(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
721 """Maximum of elements in the input.
723 Warning
724 -------
726 Scipp returns DBL_MIN or INT_MIN for empty inputs of float or int dtype,
727 respectively, while NumPy raises. Note that in the case of :py:class:`DataArray`,
728 inputs can also be "empty" if all elements contributing to an output element are
729 masked.
731 Parameters
732 ----------
733 x: scipp.typing.VariableLike
734 Input data.
735 dim:
736 Optional dimension along which to calculate the max. If not
737 given, the max over all dimensions is calculated.
739 Returns
740 -------
741 :
742 The maximum of the input values.
744 See Also
745 --------
746 scipp.min:
747 Element-wise minimum.
748 scipp.nanmin:
749 Same as min but ignoring NaN's.
750 scipp.nanmax:
751 Same as max but ignoring NaN's.
752 """
753 if dim is None:
754 return _call_cpp_func(_cpp.max, x) # type: ignore[return-value]
755 else:
756 return _call_cpp_func(_cpp.max, x, dim=dim) # type: ignore[return-value]
759def nanmin(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
760 """Minimum of elements in the input ignoring NaN's.
762 Warning
763 -------
765 Scipp returns DBL_MAX or INT_MAX for empty inputs of float or int dtype,
766 respectively, while NumPy raises. Note that in the case of :py:class:`DataArray`,
767 inputs can also be "empty" if all elements contributing to an output element are
768 masked. The same applies if all elements are NaN (or masked).
770 Parameters
771 ----------
772 x: scipp.typing.VariableLike
773 Input data.
774 dim:
775 Optional dimension along which to calculate the min. If not
776 given, the min over all dimensions is calculated.
778 Returns
779 -------
780 :
781 The minimum of the input values.
783 See Also
784 --------
785 scipp.min:
786 Element-wise minimum without special handling for NaN.
787 scipp.max:
788 Element-wise maximum without special handling for NaN.
789 scipp.nanmax:
790 Same as max but ignoring NaN's.
791 """
792 if dim is None:
793 return _call_cpp_func(_cpp.nanmin, x) # type: ignore[return-value]
794 else:
795 return _call_cpp_func(_cpp.nanmin, x, dim=dim) # type: ignore[return-value]
798def nanmax(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
799 """Maximum of elements in the input ignoring NaN's.
801 Warning
802 -------
804 Scipp returns DBL_MIN or INT_MIN for empty inputs of float or int dtype,
805 respectively, while NumPy raises. Note that in the case of :py:class:`DataArray`,
806 inputs can also be "empty" if all elements contributing to an output element are
807 masked. The same applies if all elements are NaN (or masked).
809 Parameters
810 ----------
811 x: scipp.typing.VariableLike
812 Input data.
813 dim:
814 Optional dimension along which to calculate the max. If not
815 given, the max over all dimensions is calculated.
817 Returns
818 -------
819 :
820 The maximum of the input values.
822 See Also
823 --------
824 scipp.max:
825 Element-wise maximum without special handling for NaN.
826 scipp.min:
827 Element-wise minimum without special handling for NaN.
828 scipp.nanmin:
829 Same as min but ignoring NaN's.
830 """
831 if dim is None:
832 return _call_cpp_func(_cpp.nanmax, x) # type: ignore[return-value]
833 else:
834 return _call_cpp_func(_cpp.nanmax, x, dim=dim) # type: ignore[return-value]
837def all(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
838 """Logical AND over input values.
840 Parameters
841 ----------
842 x: scipp.typing.VariableLike
843 Input data.
844 dim:
845 Optional dimension along which to calculate the AND. If not
846 given, the AND over all dimensions is calculated.
848 Returns
849 -------
850 :
851 A variable containing ``True`` if all input values (along the given dimension)
852 are ``True``.
854 See Also
855 --------
856 scipp.any:
857 Logical OR.
858 """
859 if dim is None:
860 return _call_cpp_func(_cpp.all, x) # type: ignore[return-value]
861 else:
862 return _call_cpp_func(_cpp.all, x, dim=dim) # type: ignore[return-value]
865def any(x: VariableLikeType, dim: str | None = None) -> VariableLikeType:
866 """Logical OR over input values.
868 Parameters
869 ----------
870 x: scipp.typing.VariableLike
871 Input data.
872 dim:
873 Optional dimension along which to calculate the OR. If not
874 given, the OR over all dimensions is calculated.
876 Returns
877 -------
878 :
879 A variable containing ``True`` if any input values (along the given dimension)
880 are ``True``.
882 See Also
883 --------
884 scipp.all:
885 Logical AND.
886 """
887 if dim is None:
888 return _call_cpp_func(_cpp.any, x) # type: ignore[return-value]
889 else:
890 return _call_cpp_func(_cpp.any, x, dim=dim) # type: ignore[return-value]
893# Note: When passing `sc_func`, make sure to disassociate type vars of that function
894# from the calling function. E.g., in `median`, use
895# sc_func=cast(Callable[..., VariableLike], median)
896# This ensures that the return type of the `median` function is deduced correctly.
897def _reduce_with_numpy(
898 x: VariableLikeType,
899 *,
900 dim: Dims = None,
901 sc_func: Callable[..., VariableLike],
902 np_func: Callable[..., npt.NDArray[Any]],
903 np_ma_func: Callable[..., npt.NDArray[Any]],
904 unit_func: Callable[[Unit], Unit],
905 kwargs: dict[str, Any],
906) -> VariableLikeType:
907 if isinstance(x, Dataset):
908 return Dataset({k: sc_func(v, dim=dim, **kwargs) for k, v in x.items()}) # type: ignore[arg-type]
909 if isinstance(x, DataGroup):
910 return data_group_nary(sc_func, x, dim=dim, **kwargs)
912 _expect_no_variance(x, sc_func.__name__)
913 _expect_not_binned(x, sc_func.__name__)
914 reduced_dims, out_dims, axis = _split_dims(x, dim)
915 if isinstance(x, Variable):
916 return array(
917 dims=out_dims,
918 values=np_func(x.values, axis=axis, **kwargs),
919 unit=unit_func(x.unit) if x.unit is not None else None,
920 )
921 if isinstance(x, DataArray):
922 if (mask := concepts.irreducible_mask(x, dim)) is not None:
923 masked = np.ma.masked_where( # type: ignore[no-untyped-call]
924 mask.broadcast(dims=x.dims, shape=x.shape).values, x.values
925 )
926 res = np_ma_func(masked, axis=axis, **kwargs)
927 else:
928 res = np_func(x.values, axis=axis, **kwargs)
929 return concepts.rewrap_reduced_data(
930 x, array(dims=out_dims, values=res, unit=x.unit), dim
931 )
932 raise TypeError(f'invalid argument of type {type(x)} to {sc_func}')
935def _dims_to_axis(x: VariableLikeType, dim: tuple[str, ...]) -> tuple[int, ...]:
936 return tuple(_dim_index(x.dims, d) for d in dim)
939def _dim_index(dims: tuple[str, ...], dim: str) -> int:
940 try:
941 return dims.index(dim)
942 except ValueError:
943 raise DimensionError(f'Expected dimension to be in {dims}, got {dim}') from None
946def _split_dims(
947 x: VariableLikeType, dim: Dims
948) -> tuple[tuple[str, ...], tuple[str, ...], tuple[int, ...]]:
949 reduced_dims = concepts.concrete_dims(x, dim)
950 out_dims = tuple(d for d in x.dims if d not in reduced_dims)
951 axis = _dims_to_axis(x, reduced_dims)
952 return reduced_dims, out_dims, axis
955def _expect_no_variance(x: VariableLikeType, op: str) -> None:
956 if getattr(x, 'variances', None) is not None:
957 raise VariancesError(f"'{op}' does not support variances")
960def _expect_not_binned(x: VariableLikeType, op: str) -> None:
961 if getattr(x, 'bins', None) is not None:
962 raise DTypeError(f"'{op}' does not support binned data")