Coverage for install/scipp/core/bin_remapping.py: 70%

76 statements  

« prev     ^ index     » next       coverage.py v7.6.1, created at 2024-12-01 01:59 +0000

1# SPDX-License-Identifier: BSD-3-Clause 

2# Copyright (c) 2023 Scipp contributors (https://github.com/scipp) 

3# @author Simon Heybrock 

4import itertools 

5import uuid 

6from collections.abc import Sequence 

7from math import prod 

8from typing import TYPE_CHECKING, TypeVar 

9 

10from .._scipp import core as _cpp 

11from ..typing import Dims 

12from .concepts import concrete_dims, irreducible_mask, rewrap_reduced_data 

13from .cpp_classes import DataArray, Variable 

14from .cumulative import cumsum 

15from .operations import where 

16from .variable import index 

17 

18if TYPE_CHECKING: 

19 from .bins import Bins 

20 

21 

22def hide_masked(da: DataArray, dim: Dims) -> Variable: 

23 if da.bins is None: 

24 raise ValueError("Input must be binned") 

25 if (mask := irreducible_mask(da, dim)) is not None: 

26 # Avoid using boolean indexing since it would result in (partial) content 

27 # buffer copy. Instead index just begin/end and reuse content buffer. 

28 comps = da.bins.constituents 

29 # If the mask is 1-D we can drop entire "rows" or "columns". This can 

30 # drastically reduce the number of bins to handle in some cases for better 

31 # performance. For 2-D or higher masks we fall back to making bins "empty" by 

32 # setting end=begin. 

33 if mask.ndim == 1: 

34 select = ~mask 

35 comps['begin'] = comps['begin'][select] 

36 comps['end'] = comps['end'][select] 

37 else: 

38 comps['end'] = where(mask, comps['begin'], comps['end']) 

39 return _cpp._bins_no_validate(**comps) # type: ignore[no-any-return] 

40 else: 

41 return da.data 

42 

43 

44def _with_bin_sizes(var: Variable | DataArray, sizes: Variable) -> Variable: 

45 end = cumsum(sizes) 

46 begin = end - sizes 

47 data = var if var.bins is None else var.bins.constituents['data'] 

48 dim = var.dim if var.bins is None else var.bins.constituents['dim'] 

49 return _cpp._bins_no_validate(data=data, dim=dim, begin=begin, end=end) # type: ignore[no-any-return] 

50 

51 

52def _concat_bins(var: Variable, dim: Dims) -> Variable: 

53 # To concat bins, two things need to happen: 

54 # 1. Data needs to be written to a contiguous chunk. 

55 # 2. New bin begin/end indices need to be setup. 

56 # If the dims to concatenate are the *inner* dims a call to `copy()` performs 1. 

57 # Otherwise, we first transpose and then `copy()`. 

58 # For step 2. we simply sum the (transposed) input bin sizes over the concat dims, 

59 # which `_with_bin_sizes` can use to compute new begin/end indices. 

60 changed_dims = list(concrete_dims(var, dim)) 

61 unchanged_dims = [d for d in var.dims if d not in changed_dims] 

62 # TODO It would be possible to support a copy=False parameter, to skip the copy if 

63 # the copy would not result in any moving or reordering. 

64 out = var.transpose(unchanged_dims + changed_dims).copy() 

65 out_bins: Bins[Variable] = out.bins # type: ignore[assignment] 

66 sizes = out_bins.size().sum(changed_dims) 

67 return _with_bin_sizes(out, sizes) 

68 

69 

70def _combine_bins( 

71 var: Variable, 

72 coords: dict[str, Variable], 

73 edges: Sequence[Variable], 

74 groups: Sequence[Variable], 

75 dim: Dims, 

76) -> Variable: 

77 from .binning import make_binned 

78 

79 # Overview 

80 # -------- 

81 # The purpose of this code is to combine existing bins, but in a more general 

82 # manner than `concat`, which combines all bins along a dimension. Here we operate 

83 # more like `groupby`, which combines selected subsets and creates a new output dim. 

84 # 

85 # Approach 

86 # -------- 

87 # The algorithm works conceptually similar to `_concat_bins`, but with an additional 

88 # step, calling `make_binned` for grouping within the erased dims. For the final 

89 # output binning, instead of summing the input bin sizes over all erased dims, we 

90 # sum only within the groups created by `make_binned`. 

91 # Preserve subspace dim order of input data, instead of the one given by `dim` 

92 concrete_dims_ = concrete_dims(var, dim) 

93 changed_dims = [d for d in var.dims if d in concrete_dims_] 

94 unchanged_dims = [d for d in var.dims if d not in changed_dims] 

95 changed_shape = [var.sizes[d] for d in changed_dims] 

96 unchanged_shape = [var.sizes[d] for d in unchanged_dims] 

97 changed_volume = prod(changed_shape) 

98 

99 # Move modified dims to innermost. Below this enables us to keep other dims 

100 # (listed in unchanged_dims) untouched by creating pseudo bins that wrap the entire 

101 # changed subspaces. make_binned below will thus only operate within each pseudo 

102 # bins, without mixing contents from different unchanged bins. 

103 var = var.transpose(unchanged_dims + changed_dims) 

104 var_bins: Bins[Variable] = var.bins # type: ignore[assignment] 

105 params = DataArray(var_bins.size(), coords=coords) 

106 params.coords['begin'] = var_bins.constituents['begin'].copy() 

107 params.coords['end'] = var_bins.constituents['end'].copy() 

108 

109 # Sizes and begin/end indices of changed subspace 

110 sub_sizes = index(changed_volume).broadcast( 

111 dims=unchanged_dims, shape=unchanged_shape 

112 ) 

113 params = params.flatten(to=uuid.uuid4().hex) 

114 # Setup pseudo binning for unchanged subspace. All further reordering (for grouping 

115 # and binning) will then occur *within* those pseudo bins (by splitting them). 

116 params_data = _with_bin_sizes(params, sub_sizes) 

117 # Apply desired binning/grouping to sizes and begin/end, splitting the pseudo bins. 

118 params = make_binned(params_data, edges=edges, groups=groups) 

119 

120 # Setup view of source content with desired target bin order 

121 source = _cpp._bins_no_validate( 

122 data=var_bins.constituents['data'], 

123 dim=var_bins.constituents['dim'], 

124 begin=params.bins.constituents['data'].coords['begin'], # type: ignore[union-attr] 

125 end=params.bins.constituents['data'].coords['end'], # type: ignore[union-attr] 

126 ) 

127 # Call `copy()` to reorder data. This is based on the underlying behavior of `copy` 

128 # for binned data: It computes a new contiguous and ordered mapping of bin contents 

129 # to the content buffer. The main purpose of that mechanism is to deal, e.g., with 

130 # copies of slices, but here we can leverage the same mechanism. 

131 # Then we call `_with_bin_sizes` to put in place new indices, "merging" the 

132 # reordered input bins to desired output bins. 

133 return _with_bin_sizes( 

134 source.copy(), 

135 sizes=params.data.bins.sum(), # type: ignore[union-attr] 

136 ) 

137 

138 

139def combine_bins( 

140 da: DataArray, edges: Sequence[Variable], groups: Sequence[Variable], dim: Dims 

141) -> DataArray: 

142 if da.bins is None: 

143 raise ValueError("Input must be binned") 

144 masked = hide_masked(da, dim) 

145 if len(edges) == 0 and len(groups) == 0: 

146 data = _concat_bins(masked, dim=dim) 

147 else: 

148 names = [coord.dim for coord in itertools.chain(edges, groups)] 

149 coords = {name: da.coords[name] for name in names} 

150 data = _combine_bins(masked, coords=coords, edges=edges, groups=groups, dim=dim) 

151 out = rewrap_reduced_data(da, data, dim=dim) 

152 for coord in itertools.chain(edges, groups): 

153 out.coords[coord.dim] = coord 

154 return out 

155 

156 

157_VarDa = TypeVar('_VarDa', Variable, DataArray) 

158 

159 

160def concat_bins(obj: _VarDa, dim: Dims = None) -> _VarDa: 

161 da = obj if isinstance(obj, DataArray) else DataArray(obj) # type: ignore[arg-type, redundant-expr] 

162 out = combine_bins(da, edges=[], groups=[], dim=dim) 

163 return out if isinstance(obj, DataArray) else out.data # type: ignore[redundant-expr]