Line data Source code
1 : // SPDX-License-Identifier: BSD-3-Clause
2 : // Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
3 : /// @file
4 : /// @author Jan-Lukas Wynen
5 :
6 : #include "pybind11.h"
7 :
8 : #include "scipp/core/dtype.h"
9 : #include "scipp/core/eigen.h"
10 : #include "scipp/core/tag_util.h"
11 : #include "scipp/dataset/dataset.h"
12 : #include "scipp/units/string.h"
13 : #include "scipp/variable/structures.h"
14 : #include "scipp/variable/to_unit.h"
15 : #include "scipp/variable/variable.h"
16 :
17 : #include "dtype.h"
18 : #include "format.h"
19 : #include "numpy.h"
20 : #include "py_object.h"
21 : #include "unit.h"
22 :
23 : using namespace scipp;
24 : using namespace scipp::variable;
25 :
26 : namespace py = pybind11;
27 :
28 : namespace {
29 119420 : bool is_empty(const py::object &sequence) {
30 119420 : if (py::isinstance<py::buffer>(sequence)) {
31 0 : return sequence.attr("ndim").cast<scipp::index>() == 0;
32 : }
33 119420 : return !py::bool_{sequence};
34 : }
35 :
36 22578 : auto shape_of(const py::object &array) { return py::iter(array.attr("shape")); }
37 :
38 2 : scipp::index n_remaining(const py::iterator &it) {
39 2 : return std::distance(it, it.end());
40 : }
41 :
42 1 : [[noreturn]] void throw_ndim_mismatch_error(const scipp::index a_ndim,
43 : const std::string_view a_name,
44 : const scipp::index b_ndim,
45 : const std::string_view b_name) {
46 1 : throw std::invalid_argument(
47 2 : python::format("The number of dimensions in '", a_name, "' (", a_ndim,
48 : ") does not match the number of dimensions in '", b_name,
49 2 : "' (", b_ndim, ")."));
50 : }
51 :
52 21772 : void ensure_same_shape(const py::object &values, const py::object &variances) {
53 21772 : if (values.is_none() || variances.is_none()) {
54 21375 : return;
55 : }
56 :
57 397 : auto val_shape = shape_of(values);
58 397 : auto var_shape = shape_of(variances);
59 :
60 397 : scipp::index dim = 0;
61 397 : std::tuple<scipp::index, scipp::index, scipp::index> mismatch{-1, -1, -1};
62 1088 : for (; val_shape != val_shape.end() && var_shape != var_shape.end();
63 691 : ++val_shape, ++var_shape, ++dim) {
64 691 : if (val_shape->cast<scipp::index>() != var_shape->cast<scipp::index>()) {
65 0 : if (std::get<0>(mismatch) == -1) {
66 : // Defer throwing to let ndim error take precedence.
67 0 : mismatch = std::tuple{dim, val_shape->cast<scipp::index>(),
68 0 : var_shape->cast<scipp::index>()};
69 : }
70 : }
71 : }
72 397 : if (val_shape != val_shape.end() || var_shape != var_shape.end()) {
73 0 : throw_ndim_mismatch_error(dim + n_remaining(val_shape), "values",
74 0 : dim + n_remaining(var_shape), "variances");
75 : }
76 397 : if (std::get<0>(mismatch) != -1) {
77 0 : throw std::invalid_argument(python::format(
78 : "The shapes of 'values' and 'variances' differ in dimension ",
79 0 : std::get<0>(mismatch), ": ", std::get<1>(mismatch), " vs ",
80 0 : std::get<2>(mismatch), '.'));
81 : }
82 397 : }
83 :
84 : namespace detail {
85 21784 : void consume_extra_dims(py::iterator &shape_it,
86 : const scipp::index n_extra_dims) {
87 21866 : for (scipp::index i = 0; i < n_extra_dims; ++i) {
88 82 : if (shape_it == shape_it.end())
89 0 : throw std::invalid_argument(
90 0 : "Data has too few dimensions for given dimension labels.");
91 82 : ++shape_it;
92 : }
93 21784 : }
94 :
95 21784 : Dimensions build_dimensions(py::iterator &&label_it, py::iterator &&shape_it,
96 : const scipp::index n_extra_dims,
97 : const std::string_view shape_name) {
98 21784 : Dimensions dims;
99 21784 : scipp::index dim = 0;
100 47379 : for (; label_it != label_it.end() && shape_it != shape_it.end();
101 25595 : ++label_it, ++shape_it, ++dim) {
102 25595 : dims.addInner(Dim{label_it->cast<std::string>()},
103 : shape_it->cast<scipp::index>());
104 : }
105 21784 : consume_extra_dims(shape_it, n_extra_dims);
106 21784 : if (label_it != label_it.end() || shape_it != shape_it.end()) {
107 1 : throw_ndim_mismatch_error(dim + n_remaining(label_it), "dims",
108 1 : dim + n_remaining(shape_it), shape_name);
109 : }
110 21783 : return dims;
111 1 : }
112 : } // namespace detail
113 :
114 39896 : Dimensions build_dimensions(const py::object &dim_labels,
115 : const py::object &values,
116 : const py::object &variances,
117 : const scipp::index n_extra_dims = 0) {
118 39896 : if (is_empty(dim_labels)) {
119 18112 : return Dimensions{};
120 : } else {
121 21784 : if (!values.is_none()) {
122 21772 : ensure_same_shape(values, variances);
123 43546 : return detail::build_dimensions(py::iter(dim_labels), shape_of(values),
124 65316 : n_extra_dims, "values");
125 : } else {
126 24 : return detail::build_dimensions(py::iter(dim_labels), shape_of(variances),
127 36 : n_extra_dims, "variances");
128 : }
129 : }
130 : }
131 :
132 79524 : py::object parse_data_sequence(const py::object &dim_labels,
133 : const py::object &data) {
134 : // Need to check for None because py::array does not preserve it.
135 79524 : if (is_empty(dim_labels) || data.is_none()) {
136 57407 : return data;
137 : } else {
138 22117 : return py::array(data);
139 : }
140 : }
141 :
142 2489 : void ensure_is_scalar(const py::buffer &array) {
143 2489 : if (const auto ndim = array.attr("ndim").cast<int64_t>(); ndim != 0) {
144 1 : throw except::DimensionError(python::format(
145 2 : "Cannot interpret ", ndim, "-dimensional array as a scalar."));
146 : }
147 2488 : }
148 :
149 : template <class T>
150 18035 : T extract_scalar(const py::object &obj, const units::Unit unit) {
151 : using TM = ElementTypeMap<T>;
152 : using PyType = typename TM::PyType;
153 18035 : TM::check_assignable(obj, unit);
154 18035 : if (py::isinstance<py::buffer>(obj)) {
155 2189 : ensure_is_scalar(obj);
156 2187 : return converting_cast<PyType>::cast(obj.attr("item")());
157 : } else {
158 15847 : return converting_cast<PyType>::cast(obj);
159 : }
160 : }
161 :
162 : template <>
163 331 : core::time_point extract_scalar<core::time_point>(const py::object &obj,
164 : const units::Unit unit) {
165 : using TM = ElementTypeMap<core::time_point>;
166 : using PyType = typename TM::PyType;
167 331 : TM::check_assignable(obj, unit);
168 331 : if (py::isinstance<py::buffer>(obj)) {
169 301 : ensure_is_scalar(obj);
170 903 : return core::time_point{obj.attr("astype")(py::dtype::of<PyType>())
171 602 : .attr("item")()
172 301 : .template cast<PyType>()};
173 : } else {
174 30 : return core::time_point{obj.cast<PyType>()};
175 : }
176 : }
177 :
178 : template <>
179 43 : python::PyObject extract_scalar<python::PyObject>(const py::object &obj,
180 : const units::Unit unit) {
181 : using TM = ElementTypeMap<python::PyObject>;
182 43 : TM::check_assignable(obj, unit);
183 43 : return obj;
184 : }
185 :
186 : template <class T>
187 40694 : auto make_element_array(const Dimensions &dims, const py::object &source,
188 : const units::Unit unit) {
189 40694 : if (source.is_none()) {
190 20 : return element_array<T>();
191 40674 : } else if (dims.ndim() == 0) {
192 36564 : return element_array<T>(1, extract_scalar<T>(source, unit));
193 : } else {
194 22265 : element_array<T> array(dims.volume(), core::init_for_overwrite);
195 22265 : copy_array_into_view(cast_to_array_like<T>(source, unit), array, dims);
196 22265 : return array;
197 22265 : }
198 : }
199 :
200 : template <class T> struct MakeVariable {
201 39746 : static Variable apply(const Dimensions &dims, const py::object &values,
202 : const py::object &variances, const units::Unit unit) {
203 39746 : const auto [values_unit, final_unit] = common_unit<T>(values, unit);
204 39745 : auto values_array =
205 : Values(make_element_array<T>(dims, values, values_unit));
206 79488 : auto variable = variances.is_none()
207 38944 : ? makeVariable<T>(dims, std::move(values_array))
208 : // cppcheck-suppress accessMoved # False-positive.
209 800 : : makeVariable<T>(dims, std::move(values_array),
210 41348 : Variances(make_element_array<T>(
211 : dims, variances, values_unit)));
212 39740 : variable.setUnit(values_unit);
213 79480 : return to_unit(variable, final_unit, CopyPolicy::TryAvoid);
214 39744 : }
215 : };
216 :
217 39762 : Variable make_variable(const py::object &dim_labels, const py::object &values,
218 : const py::object &variances,
219 : const std::optional<units::Unit> &unit_, DType dtype) {
220 39762 : const auto converted_values = parse_data_sequence(dim_labels, values);
221 39762 : const auto converted_variances = parse_data_sequence(dim_labels, variances);
222 39762 : dtype = common_dtype(converted_values, converted_variances, dtype);
223 : const auto dims =
224 39747 : build_dimensions(dim_labels, converted_values, converted_variances);
225 39746 : const auto unit = unit_.value_or(variable::default_unit_for(dtype));
226 : return core::CallDType<double, float, int64_t, int32_t, bool,
227 : scipp::core::time_point, std::string, Variable,
228 : DataArray, Dataset,
229 : python::PyObject>::apply<MakeVariable>(dtype, dims,
230 : values,
231 : variances,
232 79486 : unit);
233 39790 : }
234 :
235 110 : template <int N> Dimensions pad_structure_dimensions(Dimensions dims) {
236 110 : dims.addInner(Dim::InternalStructureComponent, N);
237 110 : return dims;
238 : }
239 :
240 39 : template <int M, int N> Dimensions pad_structure_dimensions(Dimensions dims) {
241 39 : dims.addInner(Dim::InternalStructureRow, M);
242 39 : dims.addInner(Dim::InternalStructureColumn, N);
243 39 : return dims;
244 : }
245 :
246 : template <class T, class Elem, int... N>
247 149 : Variable make_structured_variable(const py::object &dim_labels,
248 : const py::object &values_,
249 : const py::object &variances,
250 : const std::optional<units::Unit> &unit_) {
251 149 : if (!variances.is_none())
252 0 : throw except::VariancesError("Variances not supported for dtype " +
253 : to_string(dtype<Elem>));
254 :
255 149 : const auto values = py::array(values_);
256 149 : const auto unit = unit_.value_or(variable::default_unit_for(dtype<Elem>));
257 149 : const auto dims =
258 149 : build_dimensions(dim_labels, values, py::none(), sizeof...(N));
259 149 : const auto padded_dims = pad_structure_dimensions<N...>(dims);
260 :
261 149 : auto var = variable::make_structures<T, Elem>(
262 : dims, unit, make_element_array<Elem>(padded_dims, values, unit));
263 298 : return var;
264 149 : }
265 : } // namespace
266 :
267 : /*
268 : * It is the init method's responsibility to check that the combination
269 : * of arguments is valid. Functions down the line do not check again.
270 : */
271 3 : void bind_init(py::class_<Variable> &cls) {
272 6 : cls.def(
273 3 : py::init([](const py::object &dim_labels, const py::object &values,
274 : const py::object &variances, const ProtoUnit unit,
275 : const py::object &dtype, const bool aligned) {
276 40003 : if (values.is_none() && variances.is_none()) {
277 0 : throw std::invalid_argument(
278 0 : "At least one argument of 'values' and 'variances' is required.");
279 : }
280 39911 : const auto [scipp_dtype, actual_unit] =
281 40003 : cast_dtype_and_unit(dtype, unit);
282 :
283 39911 : auto var = [&, scipp_dtype = scipp_dtype, actual_unit = actual_unit]() {
284 39911 : if (scipp_dtype == ::dtype<Eigen::Vector3d>)
285 : return make_structured_variable<Eigen::Vector3d, double, 3>(
286 86 : dim_labels, values, variances, actual_unit);
287 39825 : if (scipp_dtype == ::dtype<Eigen::Matrix3d>)
288 : return make_structured_variable<Eigen::Matrix3d, double, 3, 3>(
289 29 : dim_labels, values, variances, actual_unit);
290 39796 : if (scipp_dtype == ::dtype<Eigen::Affine3d>)
291 : return make_structured_variable<Eigen::Affine3d, double, 4, 4>(
292 10 : dim_labels, values, variances, actual_unit);
293 39786 : if (scipp_dtype == ::dtype<core::Quaternion>)
294 : return make_structured_variable<core::Quaternion, double, 4>(
295 15 : dim_labels, values, variances, actual_unit);
296 39771 : if (scipp_dtype == ::dtype<core::Translation>)
297 : return make_structured_variable<core::Translation, double, 3>(
298 9 : dim_labels, values, variances, actual_unit);
299 :
300 39762 : return make_variable(dim_labels, values, variances, actual_unit,
301 39762 : scipp_dtype);
302 39933 : }();
303 :
304 39889 : var.set_aligned(aligned);
305 79778 : return var;
306 : }),
307 6 : py::kw_only(), py::arg("dims"), py::arg("values") = py::none(),
308 6 : py::arg("variances") = py::none(), py::arg("unit") = DefaultUnit{},
309 6 : py::arg("dtype") = py::none(), py::arg("aligned") = true,
310 : R"raw(
311 : Initialize a variable with values and/or variances.
312 :
313 : At least one argument of ``values`` and ``variances`` must be used.
314 : if you want to preallocate memory to fill later, use :py:func:`scipp.empty`.
315 :
316 : Attention
317 : ---------
318 : This constructor is meant primarily for internal use.
319 : Use one of the Specialized
320 : `creation functions <../../reference/creation-functions.rst>`_ instead.
321 : See in particular :py:func:`scipp.array` and :py:func:`scipp.scalar`.
322 :
323 : Parameters
324 : ----------
325 : dims:
326 : Dimension labels.
327 : values:
328 : Sequence of values for constructing an array variable.
329 : variances:
330 : Sequence of variances for constructing an array variable.
331 : unit:
332 : Physical unit, defaults to ``scipp.units.dimensionless``.
333 : dtype:
334 : Type of the variable's elements. Is deduced from other arguments
335 : in most cases. Defaults to ``sc.DType.float64`` if no deduction is
336 : possible.
337 : aligned:
338 : Initial value for the alignment flag.
339 : )raw");
340 3 : }
|