LCOV - code coverage report
Current view: top level - python - numpy.h (source / functions) Hit Total Coverage
Test: coverage.info Lines: 148 165 89.7 %
Date: 2024-12-01 01:56:34 Functions: 133 379 35.1 %

          Line data    Source code
       1             : // SPDX-License-Identifier: BSD-3-Clause
       2             : // Copyright (c) 2023 Scipp contributors (https://github.com/scipp)
       3             : /// @file
       4             : /// @author Simon Heybrock
       5             : #pragma once
       6             : 
       7             : #include <cstddef>
       8             : #include <functional>
       9             : 
      10             : #include "scipp/common/index_composition.h"
      11             : #include "scipp/core/parallel.h"
      12             : #include "scipp/variable/variable.h"
      13             : 
      14             : #include "py_object.h"
      15             : #include "pybind11.h"
      16             : 
      17             : namespace py = pybind11;
      18             : 
      19             : using namespace scipp;
      20             : 
      21             : /// Map C++ types to Python types to perform conversion between scipp containers
      22             : /// and numpy arrays.
      23             : template <class T> struct ElementTypeMap {
      24             :   using PyType = T;
      25             :   constexpr static bool convert = false;
      26             : 
      27       40897 :   static void check_assignable(const py::object &, const units::Unit &) {}
      28             : };
      29             : 
      30             : template <> struct ElementTypeMap<scipp::core::time_point> {
      31             :   using PyType = int64_t;
      32             :   constexpr static bool convert = true;
      33             : 
      34             :   static void check_assignable(const py::object &obj, units::Unit unit);
      35             : };
      36             : 
      37             : template <> struct ElementTypeMap<scipp::python::PyObject> {
      38             :   using PyType = py::object;
      39             :   constexpr static bool convert = true;
      40             : 
      41          45 :   static void check_assignable(const py::object &, const units::Unit &) {}
      42             : };
      43             : 
      44             : /// Cast a py::object referring to an array to py::array_t<auto> if supported.
      45             : /// Otherwise, copies the contents into a std::vector<auto>.
      46             : template <class T>
      47       23195 : auto cast_to_array_like(const py::object &obj, const units::Unit unit) {
      48             :   using TM = ElementTypeMap<T>;
      49             :   using PyType = typename TM::PyType;
      50       23195 :   TM::check_assignable(obj, unit);
      51             :   if constexpr (std::is_same_v<T, core::time_point>) {
      52             :     // pbj.cast<py::array_t<PyType> does not always work because
      53             :     // numpy.datetime64.__int__ delegates to datetime.datetime if the unit is
      54             :     // larger than ns and that cannot be converted to long.
      55             :     return obj.cast<py::array>()
      56             :         .attr("astype")(py::dtype::of<PyType>())
      57         289 :         .template cast<py::array_t<PyType>>();
      58             :   } else if constexpr (std::is_standard_layout_v<T> && std::is_trivial_v<T>) {
      59             :     // Casting to py::array_t applies all sorts of automatic conversions
      60             :     // such as integer to double, if required.
      61       22766 :     return obj.cast<py::array_t<PyType>>();
      62             :   } else {
      63             :     // py::array only supports POD types. Use a simple but expensive
      64             :     // solution for other types.
      65             :     // TODO Related to #290, we should properly support
      66             :     //  multi-dimensional input, and ignore bad shapes.
      67             :     try {
      68         196 :       return obj.cast<const std::vector<PyType>>();
      69           0 :     } catch (std::runtime_error &) {
      70           0 :       const auto &array = obj.cast<py::array>();
      71           0 :       std::ostringstream oss;
      72           0 :       oss << "Unable to assign object of dtype " << py::str(array.dtype())
      73           0 :           << " to " << scipp::core::dtype<T>;
      74           0 :       throw std::invalid_argument(oss.str());
      75           0 :     }
      76             :   }
      77             : }
      78             : 
      79             : namespace scipp::detail {
      80             : namespace {
      81             : constexpr static size_t grainsize_1d = 10000;
      82             : 
      83       23052 : template <class T> bool is_c_contiguous(const py::array_t<T> &array) {
      84             :   Py_buffer buffer;
      85       23052 :   if (PyObject_GetBuffer(array.ptr(), &buffer, PyBUF_C_CONTIGUOUS) != 0) {
      86         807 :     PyErr_Clear();
      87         807 :     return false;
      88             :   }
      89       22245 :   PyBuffer_Release(&buffer);
      90       22245 :   return true;
      91             : }
      92             : 
      93             : template <bool convert, class Source, class Destination>
      94    21840528 : void copy_element(const Source &src, Destination &&dst) {
      95             :   if constexpr (convert) {
      96        1273 :     dst = std::remove_reference_t<Destination>{src};
      97             :   } else {
      98    21839255 :     std::forward<Destination>(dst) = src;
      99             :   }
     100    21840528 : }
     101             : 
     102             : template <bool convert, class T, class Dst>
     103           0 : void copy_array_0d(const py::array_t<T> &src_array, Dst &dst) {
     104           0 :   const auto src = src_array.template unchecked<0>();
     105           0 :   auto it = dst.begin();
     106           0 :   copy_element<convert>(src(), *it);
     107           0 : }
     108             : 
     109             : template <bool convert, class T, class Dst>
     110         220 : void copy_array_1d(const py::array_t<T> &src_array, Dst &dst) {
     111         220 :   const auto src = src_array.template unchecked<1>();
     112         220 :   const auto begin = dst.begin();
     113         220 :   core::parallel::parallel_for(
     114         220 :       core::parallel::blocked_range(0, src.shape(0), grainsize_1d),
     115       19144 :       [&](const auto &range) {
     116         220 :         auto it = begin + range.begin();
     117       18924 :         for (scipp::index i = range.begin(); i < range.end(); ++i, ++it) {
     118       18704 :           copy_element<convert>(src(i), *it);
     119             :         }
     120             :       });
     121         220 : }
     122             : 
     123             : template <bool convert, class T, class Dst>
     124         154 : void copy_array_2d(const py::array_t<T> &src_array, Dst &dst) {
     125         154 :   const auto src = src_array.template unchecked<2>();
     126         154 :   const auto begin = dst.begin();
     127         154 :   core::parallel::parallel_for(
     128       25404 :       core::parallel::blocked_range(0, src.shape(0)), [&](const auto &range) {
     129         154 :         auto it = begin + range.begin() * src.shape(1);
     130        2132 :         for (scipp::index i = range.begin(); i < range.end(); ++i)
     131       13852 :           for (scipp::index j = 0; j < src.shape(1); ++j, ++it)
     132       11874 :             copy_element<convert>(src(i, j), *it);
     133             :       });
     134         154 : }
     135             : 
     136             : template <bool convert, class T, class Dst>
     137          83 : void copy_array_3d(const py::array_t<T> &src_array, Dst &dst) {
     138          83 :   const auto src = src_array.template unchecked<3>();
     139          83 :   const auto begin = dst.begin();
     140          83 :   core::parallel::parallel_for(
     141        4255 :       core::parallel::blocked_range(0, src.shape(0)), [&](const auto &range) {
     142          83 :         auto it = begin + range.begin() * src.shape(1) * src.shape(2);
     143         243 :         for (scipp::index i = range.begin(); i < range.end(); ++i)
     144         599 :           for (scipp::index j = 0; j < src.shape(1); ++j)
     145        1840 :             for (scipp::index k = 0; k < src.shape(2); ++k, ++it)
     146        1401 :               copy_element<convert>(src(i, j, k), *it);
     147             :       });
     148          83 : }
     149             : 
     150             : template <bool convert, class T, class Dst>
     151         113 : void copy_array_4d(const py::array_t<T> &src_array, Dst &dst) {
     152         113 :   const auto src = src_array.template unchecked<4>();
     153         113 :   const auto begin = dst.begin();
     154         113 :   core::parallel::parallel_for(
     155       21200 :       core::parallel::blocked_range(0, src.shape(0)), [&](const auto &range) {
     156         113 :         auto it =
     157         113 :             begin + range.begin() * src.shape(1) * src.shape(2) * src.shape(3);
     158         311 :         for (scipp::index i = range.begin(); i < range.end(); ++i)
     159         728 :           for (scipp::index j = 0; j < src.shape(1); ++j)
     160        2322 :             for (scipp::index k = 0; k < src.shape(2); ++k)
     161        9632 :               for (scipp::index l = 0; l < src.shape(3); ++l, ++it)
     162        7840 :                 copy_element<convert>(src(i, j, k, l), *it);
     163             :       });
     164         113 : }
     165             : 
     166             : template <bool convert, class T, class Dst>
     167         102 : void copy_array_5d(const py::array_t<T> &src_array, Dst &dst) {
     168         102 :   const auto src = src_array.template unchecked<5>();
     169         102 :   const auto begin = dst.begin();
     170         102 :   core::parallel::parallel_for(
     171       85504 :       core::parallel::blocked_range(0, src.shape(0)), [&](const auto &range) {
     172         102 :         auto it = begin + range.begin() * src.shape(1) * src.shape(2) *
     173         102 :                               src.shape(3) * src.shape(4);
     174         276 :         for (scipp::index i = range.begin(); i < range.end(); ++i)
     175         638 :           for (scipp::index j = 0; j < src.shape(1); ++j)
     176        2012 :             for (scipp::index k = 0; k < src.shape(2); ++k)
     177        8184 :               for (scipp::index l = 0; l < src.shape(3); ++l)
     178       40296 :                 for (scipp::index m = 0; m < src.shape(4); ++m, ++it)
     179       33660 :                   copy_element<convert>(src(i, j, k, l, m), *it);
     180             :       });
     181         102 : }
     182             : 
     183             : template <bool convert, class T, class Dst>
     184         135 : void copy_array_6d(const py::array_t<T> &src_array, Dst &dst) {
     185         135 :   const auto src = src_array.template unchecked<6>();
     186         135 :   const auto begin = dst.begin();
     187         135 :   core::parallel::parallel_for(
     188      703904 :       core::parallel::blocked_range(0, src.shape(0)), [&](const auto &range) {
     189         135 :         auto it = begin + range.begin() * src.shape(1) * src.shape(2) *
     190         135 :                               src.shape(3) * src.shape(4) * src.shape(5);
     191         373 :         for (scipp::index i = range.begin(); i < range.end(); ++i)
     192         895 :           for (scipp::index j = 0; j < src.shape(1); ++j)
     193        2903 :             for (scipp::index k = 0; k < src.shape(2); ++k)
     194       12116 :               for (scipp::index l = 0; l < src.shape(3); ++l)
     195       59394 :                 for (scipp::index m = 0; m < src.shape(4); ++m)
     196      338520 :                   for (scipp::index n = 0; n < src.shape(5); ++n, ++it)
     197      288996 :                     copy_element<convert>(src(i, j, k, l, m, n), *it);
     198             :       });
     199         135 : }
     200             : 
     201             : template <bool convert, class T, class Dst>
     202       22245 : void copy_flattened(const py::array_t<T> &src_array, Dst &dst) {
     203       22245 :   const auto src_buffer = src_array.request();
     204       22245 :   auto src = reinterpret_cast<const T *>(src_buffer.ptr);
     205       22245 :   const auto begin = dst.begin();
     206       22245 :   core::parallel::parallel_for(
     207       22245 :       core::parallel::blocked_range(0, src_buffer.size, grainsize_1d),
     208    20203404 :       [&](const auto &range) {
     209       22245 :         auto it = begin + range.begin();
     210    21500298 :         for (scipp::index i = range.begin(); i < range.end(); ++i, ++it) {
     211    21478053 :           copy_element<convert>(src[i], *it);
     212             :         }
     213             :       });
     214       22245 : }
     215             : 
     216       23052 : template <class T> auto memory_begin_end(const py::buffer_info &info) {
     217       23052 :   auto *begin = static_cast<const T *>(info.ptr);
     218       23052 :   auto *end = static_cast<const T *>(info.ptr);
     219       23052 :   const auto [begin_offset, end_offset] =
     220       23052 :       memory_bounds(info.shape.begin(), info.shape.end(), info.strides.begin());
     221       23052 :   return std::pair{begin + begin_offset, end + end_offset};
     222             : }
     223             : 
     224             : template <class T, class View>
     225       23052 : bool memory_overlaps(const py::array_t<T> &data, const View &view) {
     226       23052 :   const auto &buffer_info = data.request();
     227       23052 :   const auto [data_begin, data_end] = memory_begin_end<std::byte>(buffer_info);
     228       23052 :   const auto begin = view.begin();
     229       23052 :   const auto end = view.end();
     230       23052 :   const auto view_begin = reinterpret_cast<const std::byte *>(&*begin);
     231       23052 :   const auto view_end = reinterpret_cast<const std::byte *>(&*end);
     232             :   // Note the use of std::less, pointer comparison with operator< may be
     233             :   // undefined behavior with pointers from different arrays.
     234       42257 :   return std::less<>()(data_begin, view_end) &&
     235       42257 :          std::greater<>()(data_end, view_begin);
     236       23052 : }
     237             : 
     238             : /*
     239             :  * The code here is not pretty.
     240             :  * But a generic copy function would be much more complicated than the
     241             :  * straightforward nested loops we use here.
     242             :  * In practice, there is also little need to support ndim > 6 for non-contiguous
     243             :  * data as transform does not support such variables either.
     244             :  *
     245             :  * For a working, generic implementation, see git ref
     246             :  *  bd2e5f0a84d02bd5baf6d0afc32a2ab66dc09e2b
     247             :  * and its history, in particular
     248             :  *  86761b1e280a63b4f0b723a165188d21dd097972
     249             :  *  8721b2d02b98c1acae5c786ffda88055551d832b
     250             :  *  4c03a553827f2881672ae1f00f43ae06e879452c
     251             :  *  c2a1e3898467083bf7d019a3cb54702c8b50ba86
     252             :  *  c2a1e3898467083bf7d019a3cb54702c8b50ba86
     253             :  */
     254             : /// Copy all elements from src into dst.
     255             : /// Performs an explicit conversion of elements in `src` to the element type of
     256             : /// `dst` if `convert == true`.
     257             : /// Otherwise, elements in src are simply assigned to dst.
     258             : template <bool convert, class T, class Dst>
     259       23052 : void copy_elements(const py::array_t<T> &src, Dst &dst) {
     260       23052 :   if (scipp::size(dst) != src.size())
     261           0 :     throw std::runtime_error(
     262             :         "Numpy data size does not match size of target object.");
     263             : 
     264       69156 :   const auto dispatch = [&dst](const py::array_t<T> &src_) {
     265       23052 :     if (is_c_contiguous(src_))
     266       22245 :       return copy_flattened<convert>(src_, dst);
     267             : 
     268         807 :     switch (src_.ndim()) {
     269           0 :     case 0:
     270           0 :       return copy_array_0d<convert>(src_, dst);
     271         220 :     case 1:
     272         220 :       return copy_array_1d<convert>(src_, dst);
     273         154 :     case 2:
     274         154 :       return copy_array_2d<convert>(src_, dst);
     275          83 :     case 3:
     276          83 :       return copy_array_3d<convert>(src_, dst);
     277         113 :     case 4:
     278         113 :       return copy_array_4d<convert>(src_, dst);
     279         102 :     case 5:
     280         102 :       return copy_array_5d<convert>(src_, dst);
     281         135 :     case 6:
     282         135 :       return copy_array_6d<convert>(src_, dst);
     283           0 :     default:
     284           0 :       throw std::runtime_error(
     285             :           "Numpy array with non-c-contiguous memory layout has more "
     286             :           "dimensions than supported in the current implementation. "
     287             :           "Try making a copy of the array first to get a "
     288             :           "c-contiguous layout.");
     289             :     }
     290             :   };
     291       23052 :   dispatch(memory_overlaps(src, dst) ? py::array_t<T>(src.request()) : src);
     292       23052 : }
     293             : } // namespace
     294             : } // namespace scipp::detail
     295             : 
     296             : template <class SourceDType, class Destination>
     297       23055 : void copy_array_into_view(const py::array_t<SourceDType> &src,
     298             :                           Destination &&dst, const Dimensions &dims) {
     299       23055 :   const auto &shape = dims.shape();
     300       23055 :   if (!std::equal(shape.begin(), shape.end(), src.shape(),
     301       23055 :                   src.shape() + src.ndim()))
     302           3 :     throw except::DimensionError("The shape of the provided data "
     303             :                                  "does not match the existing "
     304             :                                  "object.");
     305             :   scipp::detail::copy_elements<ElementTypeMap<
     306       23052 :       typename std::remove_reference_t<Destination>::value_type>::convert>(src,
     307             :                                                                            dst);
     308       23052 : }
     309             : 
     310             : template <class SourceDType, class Destination>
     311          98 : void copy_array_into_view(const std::vector<SourceDType> &src, Destination &dst,
     312             :                           const Dimensions &) {
     313          98 :   core::expect::sizeMatches(dst, src);
     314          98 :   std::copy(begin(src), end(src), dst.begin());
     315          98 : }
     316             : 
     317             : core::time_point make_time_point(const py::buffer &buffer, int64_t scale = 1);

Generated by: LCOV version 1.14