"""Logic for creating models."""
# Because `dict` is in the local namespace of the `BaseModel` class, we use `Dict` for annotations.
# TODO v3 fallback to `dict` when the deprecated `dict` method gets removed.
# ruff: noqa: UP035
from __future__ import annotations as _annotations
import operator
import sys
import types
import typing
import warnings
from collections.abc import Generator, Mapping
from copy import copy, deepcopy
from functools import cached_property
from typing import (
TYPE_CHECKING,
Any,
Callable,
ClassVar,
Dict,
Literal,
TypeVar,
Union,
cast,
overload,
)
import pydantic_core
import typing_extensions
from pydantic_core import PydanticUndefined, ValidationError
from typing_extensions import Self, TypeAlias, Unpack
from . import PydanticDeprecatedSince20, PydanticDeprecatedSince211
from ._internal import (
_config,
_decorators,
_fields,
_forward_ref,
_generics,
_mock_val_ser,
_model_construction,
_namespace_utils,
_repr,
_typing_extra,
_utils,
)
from ._migration import getattr_migration
from .aliases import AliasChoices, AliasPath
from .annotated_handlers import GetCoreSchemaHandler, GetJsonSchemaHandler
from .config import ConfigDict
from .errors import PydanticUndefinedAnnotation, PydanticUserError
from .json_schema import DEFAULT_REF_TEMPLATE, GenerateJsonSchema, JsonSchemaMode, JsonSchemaValue, model_json_schema
from .plugin._schema_validator import PluggableSchemaValidator
if TYPE_CHECKING:
from inspect import Signature
from pathlib import Path
from pydantic_core import CoreSchema, SchemaSerializer, SchemaValidator
from ._internal._namespace_utils import MappingNamespace
from ._internal._utils import AbstractSetIntStr, MappingIntStrAny
from .deprecated.parse import Protocol as DeprecatedParseProtocol
from .fields import ComputedFieldInfo, FieldInfo, ModelPrivateAttr
else:
# See PyCharm issues https://youtrack.jetbrains.com/issue/PY-21915
# and https://youtrack.jetbrains.com/issue/PY-51428
DeprecationWarning = PydanticDeprecatedSince20
__all__ = 'BaseModel', 'create_model'
# Keep these type aliases available at runtime:
TupleGenerator: TypeAlias = Generator[tuple[str, Any], None, None]
# NOTE: In reality, `bool` should be replaced by `Literal[True]` but mypy fails to correctly apply bidirectional
# type inference (e.g. when using `{'a': {'b': True}}`):
# NOTE: Keep this type alias in sync with the stub definition in `pydantic-core`:
IncEx: TypeAlias = Union[set[int], set[str], Mapping[int, Union['IncEx', bool]], Mapping[str, Union['IncEx', bool]]]
_object_setattr = _model_construction.object_setattr
def _check_frozen(model_cls: type[BaseModel], name: str, value: Any) -> None:
if model_cls.model_config.get('frozen'):
error_type = 'frozen_instance'
elif getattr(model_cls.__pydantic_fields__.get(name), 'frozen', False):
error_type = 'frozen_field'
else:
return
raise ValidationError.from_exception_data(
model_cls.__name__, [{'type': error_type, 'loc': (name,), 'input': value}]
)
def _model_field_setattr_handler(model: BaseModel, name: str, val: Any) -> None:
model.__dict__[name] = val
model.__pydantic_fields_set__.add(name)
def _private_setattr_handler(model: BaseModel, name: str, val: Any) -> None:
if getattr(model, '__pydantic_private__', None) is None:
# While the attribute should be present at this point, this may not be the case if
# users do unusual stuff with `model_post_init()` (which is where the `__pydantic_private__`
# is initialized, by wrapping the user-defined `model_post_init()`), e.g. if they mock
# the `model_post_init()` call. Ideally we should find a better way to init private attrs.
object.__setattr__(model, '__pydantic_private__', {})
model.__pydantic_private__[name] = val # pyright: ignore[reportOptionalSubscript]
_SIMPLE_SETATTR_HANDLERS: Mapping[str, Callable[[BaseModel, str, Any], None]] = {
'model_field': _model_field_setattr_handler,
'validate_assignment': lambda model, name, val: model.__pydantic_validator__.validate_assignment(model, name, val), # pyright: ignore[reportAssignmentType]
'private': _private_setattr_handler,
'cached_property': lambda model, name, val: model.__dict__.__setitem__(name, val),
'extra_known': lambda model, name, val: _object_setattr(model, name, val),
}
class BaseModel(metaclass=_model_construction.ModelMetaclass):
"""!!! abstract "Usage Documentation"
[Models](../concepts/models.md)
A base class for creating Pydantic models.
Attributes:
__class_vars__: The names of the class variables defined on the model.
__private_attributes__: Metadata about the private attributes of the model.
__signature__: The synthesized `__init__` [`Signature`][inspect.Signature] of the model.
__pydantic_complete__: Whether model building is completed, or if there are still undefined fields.
__pydantic_core_schema__: The core schema of the model.
__pydantic_custom_init__: Whether the model has a custom `__init__` function.
__pydantic_decorators__: Metadata containing the decorators defined on the model.
This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1.
__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to
__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.
__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models.
__pydantic_post_init__: The name of the post-init method for the model, if defined.
__pydantic_root_model__: Whether the model is a [`RootModel`][pydantic.root_model.RootModel].
__pydantic_serializer__: The `pydantic-core` `SchemaSerializer` used to dump instances of the model.
__pydantic_validator__: The `pydantic-core` `SchemaValidator` used to validate instances of the model.
__pydantic_fields__: A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects.
__pydantic_computed_fields__: A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects.
__pydantic_extra__: A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra]
is set to `'allow'`.
__pydantic_fields_set__: The names of fields explicitly set during instantiation.
__pydantic_private__: Values of private attributes set on the model instance.
"""
# Note: Many of the below class vars are defined in the metaclass, but we define them here for type checking purposes.
model_config: ClassVar[ConfigDict] = ConfigDict()
"""
Configuration for the model, should be a dictionary conforming to [`ConfigDict`][pydantic.config.ConfigDict].
"""
__class_vars__: ClassVar[set[str]]
"""The names of the class variables defined on the model."""
__private_attributes__: ClassVar[Dict[str, ModelPrivateAttr]] # noqa: UP006
"""Metadata about the private attributes of the model."""
__signature__: ClassVar[Signature]
"""The synthesized `__init__` [`Signature`][inspect.Signature] of the model."""
__pydantic_complete__: ClassVar[bool] = False
"""Whether model building is completed, or if there are still undefined fields."""
__pydantic_core_schema__: ClassVar[CoreSchema]
"""The core schema of the model."""
__pydantic_custom_init__: ClassVar[bool]
"""Whether the model has a custom `__init__` method."""
# Must be set for `GenerateSchema.model_schema` to work for a plain `BaseModel` annotation.
__pydantic_decorators__: ClassVar[_decorators.DecoratorInfos] = _decorators.DecoratorInfos()
"""Metadata containing the decorators defined on the model.
This replaces `Model.__validators__` and `Model.__root_validators__` from Pydantic V1."""
__pydantic_generic_metadata__: ClassVar[_generics.PydanticGenericMetadata]
"""Metadata for generic models; contains data used for a similar purpose to
__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these."""
__pydantic_parent_namespace__: ClassVar[Dict[str, Any] | None] = None # noqa: UP006
"""Parent namespace of the model, used for automatic rebuilding of models."""
__pydantic_post_init__: ClassVar[None | Literal['model_post_init']]
"""The name of the post-init method for the model, if defined."""
__pydantic_root_model__: ClassVar[bool] = False
"""Whether the model is a [`RootModel`][pydantic.root_model.RootModel]."""
__pydantic_serializer__: ClassVar[SchemaSerializer]
"""The `pydantic-core` `SchemaSerializer` used to dump instances of the model."""
__pydantic_validator__: ClassVar[SchemaValidator | PluggableSchemaValidator]
"""The `pydantic-core` `SchemaValidator` used to validate instances of the model."""
__pydantic_fields__: ClassVar[Dict[str, FieldInfo]] # noqa: UP006
"""A dictionary of field names and their corresponding [`FieldInfo`][pydantic.fields.FieldInfo] objects.
This replaces `Model.__fields__` from Pydantic V1.
"""
__pydantic_setattr_handlers__: ClassVar[Dict[str, Callable[[BaseModel, str, Any], None]]] # noqa: UP006
"""`__setattr__` handlers. Memoizing the handlers leads to a dramatic performance improvement in `__setattr__`"""
__pydantic_computed_fields__: ClassVar[Dict[str, ComputedFieldInfo]] # noqa: UP006
"""A dictionary of computed field names and their corresponding [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] objects."""
__pydantic_extra__: dict[str, Any] | None = _model_construction.NoInitField(init=False)
"""A dictionary containing extra values, if [`extra`][pydantic.config.ConfigDict.extra] is set to `'allow'`."""
__pydantic_fields_set__: set[str] = _model_construction.NoInitField(init=False)
"""The names of fields explicitly set during instantiation."""
__pydantic_private__: dict[str, Any] | None = _model_construction.NoInitField(init=False)
"""Values of private attributes set on the model instance."""
if not TYPE_CHECKING:
# Prevent `BaseModel` from being instantiated directly
# (defined in an `if not TYPE_CHECKING` block for clarity and to avoid type checking errors):
__pydantic_core_schema__ = _mock_val_ser.MockCoreSchema(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
code='base-model-instantiated',
)
__pydantic_validator__ = _mock_val_ser.MockValSer(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
val_or_ser='validator',
code='base-model-instantiated',
)
__pydantic_serializer__ = _mock_val_ser.MockValSer(
'Pydantic models should inherit from BaseModel, BaseModel cannot be instantiated directly',
val_or_ser='serializer',
code='base-model-instantiated',
)
__slots__ = '__dict__', '__pydantic_fields_set__', '__pydantic_extra__', '__pydantic_private__'
def __init__(self, /, **data: Any) -> None:
"""Create a new model by parsing and validating input data from keyword arguments.
Raises [`ValidationError`][pydantic_core.ValidationError] if the input data cannot be
validated to form a valid model.
`self` is explicitly positional-only to allow `self` as a field name.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
validated_self = self.__pydantic_validator__.validate_python(data, self_instance=self)
if self is not validated_self:
warnings.warn(
'A custom validator is returning a value other than `self`.\n'
"Returning anything other than `self` from a top level model validator isn't supported when validating via `__init__`.\n"
'See the `model_validator` docs (https://docs.pydantic.dev/latest/concepts/validators/#model-validators) for more details.',
stacklevel=2,
)
# The following line sets a flag that we use to determine when `__init__` gets overridden by the user
__init__.__pydantic_base_init__ = True # pyright: ignore[reportFunctionMemberAccess]
@_utils.deprecated_instance_property
@classmethod
def model_fields(cls) -> dict[str, FieldInfo]:
"""A mapping of field names to their respective [`FieldInfo`][pydantic.fields.FieldInfo] instances.
!!! warning
Accessing this attribute from a model instance is deprecated, and will not work in Pydantic V3.
Instead, you should access this attribute from the model class.
"""
return getattr(cls, '__pydantic_fields__', {})
@_utils.deprecated_instance_property
@classmethod
def model_computed_fields(cls) -> dict[str, ComputedFieldInfo]:
"""A mapping of computed field names to their respective [`ComputedFieldInfo`][pydantic.fields.ComputedFieldInfo] instances.
!!! warning
Accessing this attribute from a model instance is deprecated, and will not work in Pydantic V3.
Instead, you should access this attribute from the model class.
"""
return getattr(cls, '__pydantic_computed_fields__', {})
@property
def model_extra(self) -> dict[str, Any] | None:
"""Get extra fields set during validation.
Returns:
A dictionary of extra fields, or `None` if `config.extra` is not set to `"allow"`.
"""
return self.__pydantic_extra__
@property
def model_fields_set(self) -> set[str]:
"""Returns the set of fields that have been explicitly set on this model instance.
Returns:
A set of strings representing the fields that have been set,
i.e. that were not filled from defaults.
"""
return self.__pydantic_fields_set__
@classmethod
def model_construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: C901
"""Creates a new instance of the `Model` class with validated data.
Creates a new model setting `__dict__` and `__pydantic_fields_set__` from trusted or pre-validated data.
Default values are respected, but no other validation is performed.
!!! note
`model_construct()` generally respects the `model_config.extra` setting on the provided model.
That is, if `model_config.extra == 'allow'`, then all extra passed values are added to the model instance's `__dict__`
and `__pydantic_extra__` fields. If `model_config.extra == 'ignore'` (the default), then all extra passed values are ignored.
Because no validation is performed with a call to `model_construct()`, having `model_config.extra == 'forbid'` does not result in
an error if extra values are passed, but they will be ignored.
Args:
_fields_set: A set of field names that were originally explicitly set during instantiation. If provided,
this is directly used for the [`model_fields_set`][pydantic.BaseModel.model_fields_set] attribute.
Otherwise, the field names from the `values` argument will be used.
values: Trusted or pre-validated data dictionary.
Returns:
A new instance of the `Model` class with validated data.
"""
m = cls.__new__(cls)
fields_values: dict[str, Any] = {}
fields_set = set()
for name, field in cls.__pydantic_fields__.items():
if field.alias is not None and field.alias in values:
fields_values[name] = values.pop(field.alias)
fields_set.add(name)
if (name not in fields_set) and (field.validation_alias is not None):
validation_aliases: list[str | AliasPath] = (
field.validation_alias.choices
if isinstance(field.validation_alias, AliasChoices)
else [field.validation_alias]
)
for alias in validation_aliases:
if isinstance(alias, str) and alias in values:
fields_values[name] = values.pop(alias)
fields_set.add(name)
break
elif isinstance(alias, AliasPath):
value = alias.search_dict_for_path(values)
if value is not PydanticUndefined:
fields_values[name] = value
fields_set.add(name)
break
if name not in fields_set:
if name in values:
fields_values[name] = values.pop(name)
fields_set.add(name)
elif not field.is_required():
fields_values[name] = field.get_default(call_default_factory=True, validated_data=fields_values)
if _fields_set is None:
_fields_set = fields_set
_extra: dict[str, Any] | None = values if cls.model_config.get('extra') == 'allow' else None
_object_setattr(m, '__dict__', fields_values)
_object_setattr(m, '__pydantic_fields_set__', _fields_set)
if not cls.__pydantic_root_model__:
_object_setattr(m, '__pydantic_extra__', _extra)
if cls.__pydantic_post_init__:
m.model_post_init(None)
# update private attributes with values set
if hasattr(m, '__pydantic_private__') and m.__pydantic_private__ is not None:
for k, v in values.items():
if k in m.__private_attributes__:
m.__pydantic_private__[k] = v
elif not cls.__pydantic_root_model__:
# Note: if there are any private attributes, cls.__pydantic_post_init__ would exist
# Since it doesn't, that means that `__pydantic_private__` should be set to None
_object_setattr(m, '__pydantic_private__', None)
return m
def model_copy(self, *, update: Mapping[str, Any] | None = None, deep: bool = False) -> Self:
"""!!! abstract "Usage Documentation"
[`model_copy`](../concepts/serialization.md#model_copy)
Returns a copy of the model.
!!! note
The underlying instance's [`__dict__`][object.__dict__] attribute is copied. This
might have unexpected side effects if you store anything in it, on top of the model
fields (e.g. the value of [cached properties][functools.cached_property]).
Args:
update: Values to change/add in the new model. Note: the data is not validated
before creating the new model. You should trust this data.
deep: Set to `True` to make a deep copy of the model.
Returns:
New model instance.
"""
copied = self.__deepcopy__() if deep else self.__copy__()
if update:
if self.model_config.get('extra') == 'allow':
for k, v in update.items():
if k in self.__pydantic_fields__:
copied.__dict__[k] = v
else:
if copied.__pydantic_extra__ is None:
copied.__pydantic_extra__ = {}
copied.__pydantic_extra__[k] = v
else:
copied.__dict__.update(update)
copied.__pydantic_fields_set__.update(update.keys())
return copied
def model_dump(
self,
*,
mode: Literal['json', 'python'] | str = 'python',
include: IncEx | None = None,
exclude: IncEx | None = None,
context: Any | None = None,
by_alias: bool | None = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool | Literal['none', 'warn', 'error'] = True,
fallback: Callable[[Any], Any] | None = None,
serialize_as_any: bool = False,
) -> dict[str, Any]:
"""!!! abstract "Usage Documentation"
[`model_dump`](../concepts/serialization.md#modelmodel_dump)
Generate a dictionary representation of the model, optionally specifying which fields to include or exclude.
Args:
mode: The mode in which `to_python` should run.
If mode is 'json', the output will only contain JSON serializable types.
If mode is 'python', the output may contain non-JSON-serializable Python objects.
include: A set of fields to include in the output.
exclude: A set of fields to exclude from the output.
context: Additional context to pass to the serializer.
by_alias: Whether to use the field's alias in the dictionary key if defined.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of `None`.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
fallback: A function to call when an unknown value is encountered. If not provided,
a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns:
A dictionary representation of the model.
"""
return self.__pydantic_serializer__.to_python(
self,
mode=mode,
by_alias=by_alias,
include=include,
exclude=exclude,
context=context,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
round_trip=round_trip,
warnings=warnings,
fallback=fallback,
serialize_as_any=serialize_as_any,
)
def model_dump_json(
self,
*,
indent: int | None = None,
include: IncEx | None = None,
exclude: IncEx | None = None,
context: Any | None = None,
by_alias: bool | None = None,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
round_trip: bool = False,
warnings: bool | Literal['none', 'warn', 'error'] = True,
fallback: Callable[[Any], Any] | None = None,
serialize_as_any: bool = False,
) -> str:
"""!!! abstract "Usage Documentation"
[`model_dump_json`](../concepts/serialization.md#modelmodel_dump_json)
Generates a JSON representation of the model using Pydantic's `to_json` method.
Args:
indent: Indentation to use in the JSON output. If None is passed, the output will be compact.
include: Field(s) to include in the JSON output.
exclude: Field(s) to exclude from the JSON output.
context: Additional context to pass to the serializer.
by_alias: Whether to serialize using field aliases.
exclude_unset: Whether to exclude fields that have not been explicitly set.
exclude_defaults: Whether to exclude fields that are set to their default value.
exclude_none: Whether to exclude fields that have a value of `None`.
round_trip: If True, dumped values should be valid as input for non-idempotent types such as Json[T].
warnings: How to handle serialization errors. False/"none" ignores them, True/"warn" logs errors,
"error" raises a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError].
fallback: A function to call when an unknown value is encountered. If not provided,
a [`PydanticSerializationError`][pydantic_core.PydanticSerializationError] error is raised.
serialize_as_any: Whether to serialize fields with duck-typing serialization behavior.
Returns:
A JSON string representation of the model.
"""
return self.__pydantic_serializer__.to_json(
self,
indent=indent,
include=include,
exclude=exclude,
context=context,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
round_trip=round_trip,
warnings=warnings,
fallback=fallback,
serialize_as_any=serialize_as_any,
).decode()
@classmethod
def model_json_schema(
cls,
by_alias: bool = True,
ref_template: str = DEFAULT_REF_TEMPLATE,
schema_generator: type[GenerateJsonSchema] = GenerateJsonSchema,
mode: JsonSchemaMode = 'validation',
) -> dict[str, Any]:
"""Generates a JSON schema for a model class.
Args:
by_alias: Whether to use attribute aliases or not.
ref_template: The reference template.
schema_generator: To override the logic used to generate the JSON schema, as a subclass of
`GenerateJsonSchema` with your desired modifications
mode: The mode in which to generate the schema.
Returns:
The JSON schema for the given model class.
"""
return model_json_schema(
cls, by_alias=by_alias, ref_template=ref_template, schema_generator=schema_generator, mode=mode
)
@classmethod
def model_parametrized_name(cls, params: tuple[type[Any], ...]) -> str:
"""Compute the class name for parametrizations of generic classes.
This method can be overridden to achieve a custom naming scheme for generic BaseModels.
Args:
params: Tuple of types of the class. Given a generic class
`Model` with 2 type variables and a concrete model `Model[str, int]`,
the value `(str, int)` would be passed to `params`.
Returns:
String representing the new class where `params` are passed to `cls` as type variables.
Raises:
TypeError: Raised when trying to generate concrete names for non-generic models.
"""
if not issubclass(cls, typing.Generic):
raise TypeError('Concrete names should only be generated for generic models.')
# Any strings received should represent forward references, so we handle them specially below.
# If we eventually move toward wrapping them in a ForwardRef in __class_getitem__ in the future,
# we may be able to remove this special case.
param_names = [param if isinstance(param, str) else _repr.display_as_type(param) for param in params]
params_component = ', '.join(param_names)
return f'{cls.__name__}[{params_component}]'
def model_post_init(self, context: Any, /) -> None:
"""Override this method to perform additional initialization after `__init__` and `model_construct`.
This is useful if you want to do some validation that requires the entire model to be initialized.
"""
pass
@classmethod
def model_rebuild(
cls,
*,
force: bool = False,
raise_errors: bool = True,
_parent_namespace_depth: int = 2,
_types_namespace: MappingNamespace | None = None,
) -> bool | None:
"""Try to rebuild the pydantic-core schema for the model.
This may be necessary when one of the annotations is a ForwardRef which could not be resolved during
the initial attempt to build the schema, and automatic rebuilding fails.
Args:
force: Whether to force the rebuilding of the model schema, defaults to `False`.
raise_errors: Whether to raise errors, defaults to `True`.
_parent_namespace_depth: The depth level of the parent namespace, defaults to 2.
_types_namespace: The types namespace, defaults to `None`.
Returns:
Returns `None` if the schema is already "complete" and rebuilding was not required.
If rebuilding _was_ required, returns `True` if rebuilding was successful, otherwise `False`.
"""
if not force and cls.__pydantic_complete__:
return None
for attr in ('__pydantic_core_schema__', '__pydantic_validator__', '__pydantic_serializer__'):
if attr in cls.__dict__:
# Deleting the validator/serializer is necessary as otherwise they can get reused in
# pydantic-core. Same applies for the core schema that can be reused in schema generation.
delattr(cls, attr)
cls.__pydantic_complete__ = False
if _types_namespace is not None:
rebuild_ns = _types_namespace
elif _parent_namespace_depth > 0:
rebuild_ns = _typing_extra.parent_frame_namespace(parent_depth=_parent_namespace_depth, force=True) or {}
else:
rebuild_ns = {}
parent_ns = _model_construction.unpack_lenient_weakvaluedict(cls.__pydantic_parent_namespace__) or {}
ns_resolver = _namespace_utils.NsResolver(
parent_namespace={**rebuild_ns, **parent_ns},
)
if not cls.__pydantic_fields_complete__:
typevars_map = _generics.get_model_typevars_map(cls)
try:
cls.__pydantic_fields__ = _fields.rebuild_model_fields(
cls,
ns_resolver=ns_resolver,
typevars_map=typevars_map,
)
except NameError as e:
exc = PydanticUndefinedAnnotation.from_name_error(e)
_mock_val_ser.set_model_mocks(cls, f'`{exc.name}`')
if raise_errors:
raise exc from e
if not raise_errors and not cls.__pydantic_fields_complete__:
# No need to continue with schema gen, it is guaranteed to fail
return False
assert cls.__pydantic_fields_complete__
return _model_construction.complete_model_class(
cls,
_config.ConfigWrapper(cls.model_config, check=False),
raise_errors=raise_errors,
ns_resolver=ns_resolver,
)
@classmethod
def model_validate(
cls,
obj: Any,
*,
strict: bool | None = None,
from_attributes: bool | None = None,
context: Any | None = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self:
"""Validate a pydantic model instance.
Args:
obj: The object to validate.
strict: Whether to enforce types strictly.
from_attributes: Whether to extract data from object attributes.
context: Additional context to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Raises:
ValidationError: If the object could not be validated.
Returns:
The validated model instance.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
if by_alias is False and by_name is not True:
raise PydanticUserError(
'At least one of `by_alias` or `by_name` must be set to True.',
code='validate-by-alias-and-name-false',
)
return cls.__pydantic_validator__.validate_python(
obj, strict=strict, from_attributes=from_attributes, context=context, by_alias=by_alias, by_name=by_name
)
@classmethod
def model_validate_json(
cls,
json_data: str | bytes | bytearray,
*,
strict: bool | None = None,
context: Any | None = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self:
"""!!! abstract "Usage Documentation"
[JSON Parsing](../concepts/json.md#json-parsing)
Validate the given JSON data against the Pydantic model.
Args:
json_data: The JSON data to validate.
strict: Whether to enforce types strictly.
context: Extra variables to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Returns:
The validated Pydantic model.
Raises:
ValidationError: If `json_data` is not a JSON string or the object could not be validated.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
if by_alias is False and by_name is not True:
raise PydanticUserError(
'At least one of `by_alias` or `by_name` must be set to True.',
code='validate-by-alias-and-name-false',
)
return cls.__pydantic_validator__.validate_json(
json_data, strict=strict, context=context, by_alias=by_alias, by_name=by_name
)
@classmethod
def model_validate_strings(
cls,
obj: Any,
*,
strict: bool | None = None,
context: Any | None = None,
by_alias: bool | None = None,
by_name: bool | None = None,
) -> Self:
"""Validate the given object with string data against the Pydantic model.
Args:
obj: The object containing string data to validate.
strict: Whether to enforce types strictly.
context: Extra variables to pass to the validator.
by_alias: Whether to use the field's alias when validating against the provided input data.
by_name: Whether to use the field's name when validating against the provided input data.
Returns:
The validated Pydantic model.
"""
# `__tracebackhide__` tells pytest and some other tools to omit this function from tracebacks
__tracebackhide__ = True
if by_alias is False and by_name is not True:
raise PydanticUserError(
'At least one of `by_alias` or `by_name` must be set to True.',
code='validate-by-alias-and-name-false',
)
return cls.__pydantic_validator__.validate_strings(
obj, strict=strict, context=context, by_alias=by_alias, by_name=by_name
)
@classmethod
def __get_pydantic_core_schema__(cls, source: type[BaseModel], handler: GetCoreSchemaHandler, /) -> CoreSchema:
# This warning is only emitted when calling `super().__get_pydantic_core_schema__` from a model subclass.
# In the generate schema logic, this method (`BaseModel.__get_pydantic_core_schema__`) is special cased to
# *not* be called if not overridden.
warnings.warn(
'The `__get_pydantic_core_schema__` method of the `BaseModel` class is deprecated. If you are calling '
'`super().__get_pydantic_core_schema__` when overriding the method on a Pydantic model, consider using '
'`handler(source)` instead. However, note that overriding this method on models can lead to unexpected '
'side effects.',
PydanticDeprecatedSince211,
stacklevel=2,
)
# Logic copied over from `GenerateSchema._model_schema`:
schema = cls.__dict__.get('__pydantic_core_schema__')
if schema is not None and not isinstance(schema, _mock_val_ser.MockCoreSchema):
return cls.__pydantic_core_schema__
return handler(source)
@classmethod
def __get_pydantic_json_schema__(
cls,
core_schema: CoreSchema,
handler: GetJsonSchemaHandler,
/,
) -> JsonSchemaValue:
"""Hook into generating the model's JSON schema.
Args:
core_schema: A `pydantic-core` CoreSchema.
You can ignore this argument and call the handler with a new CoreSchema,
wrap this CoreSchema (`{'type': 'nullable', 'schema': current_schema}`),
or just call the handler with the original schema.
handler: Call into Pydantic's internal JSON schema generation.
This will raise a `pydantic.errors.PydanticInvalidForJsonSchema` if JSON schema
generation fails.
Since this gets called by `BaseModel.model_json_schema` you can override the
`schema_generator` argument to that function to change JSON schema generation globally
for a type.
Returns:
A JSON schema, as a Python object.
"""
return handler(core_schema)
@classmethod
def __pydantic_init_subclass__(cls, **kwargs: Any) -> None:
"""This is intended to behave just like `__init_subclass__`, but is called by `ModelMetaclass`
only after the class is actually fully initialized. In particular, attributes like `model_fields` will
be present when this is called.
This is necessary because `__init_subclass__` will always be called by `type.__new__`,
and it would require a prohibitively large refactor to the `ModelMetaclass` to ensure that
`type.__new__` was called in such a manner that the class would already be sufficiently initialized.
This will receive the same `kwargs` that would be passed to the standard `__init_subclass__`, namely,
any kwargs passed to the class definition that aren't used internally by pydantic.
Args:
**kwargs: Any keyword arguments passed to the class definition that aren't used internally
by pydantic.
"""
pass
def __class_getitem__(
cls, typevar_values: type[Any] | tuple[type[Any], ...]
) -> type[BaseModel] | _forward_ref.PydanticRecursiveRef:
cached = _generics.get_cached_generic_type_early(cls, typevar_values)
if cached is not None:
return cached
if cls is BaseModel:
raise TypeError('Type parameters should be placed on typing.Generic, not BaseModel')
if not hasattr(cls, '__parameters__'):
raise TypeError(f'{cls} cannot be parametrized because it does not inherit from typing.Generic')
if not cls.__pydantic_generic_metadata__['parameters'] and typing.Generic not in cls.__bases__:
raise TypeError(f'{cls} is not a generic class')
if not isinstance(typevar_values, tuple):
typevar_values = (typevar_values,)
# For a model `class Model[T, U, V = int](BaseModel): ...` parametrized with `(str, bool)`,
# this gives us `{T: str, U: bool, V: int}`:
typevars_map = _generics.map_generic_model_arguments(cls, typevar_values)
# We also update the provided args to use defaults values (`(str, bool)` becomes `(str, bool, int)`):
typevar_values = tuple(v for v in typevars_map.values())
if _utils.all_identical(typevars_map.keys(), typevars_map.values()) and typevars_map:
submodel = cls # if arguments are equal to parameters it's the same object
_generics.set_cached_generic_type(cls, typevar_values, submodel)
else:
parent_args = cls.__pydantic_generic_metadata__['args']
if not parent_args:
args = typevar_values
else:
args = tuple(_generics.replace_types(arg, typevars_map) for arg in parent_args)
origin = cls.__pydantic_generic_metadata__['origin'] or cls
model_name = origin.model_parametrized_name(args)
params = tuple(
{param: None for param in _generics.iter_contained_typevars(typevars_map.values())}
) # use dict as ordered set
with _generics.generic_recursion_self_type(origin, args) as maybe_self_type:
cached = _generics.get_cached_generic_type_late(cls, typevar_values, origin, args)
if cached is not None:
return cached
if maybe_self_type is not None:
return maybe_self_type
# Attempt to rebuild the origin in case new types have been defined
try:
# depth 2 gets you above this __class_getitem__ call.
# Note that we explicitly provide the parent ns, otherwise
# `model_rebuild` will use the parent ns no matter if it is the ns of a module.
# We don't want this here, as this has unexpected effects when a model
# is being parametrized during a forward annotation evaluation.
parent_ns = _typing_extra.parent_frame_namespace(parent_depth=2) or {}
origin.model_rebuild(_types_namespace=parent_ns)
except PydanticUndefinedAnnotation:
# It's okay if it fails, it just means there are still undefined types
# that could be evaluated later.
pass
submodel = _generics.create_generic_submodel(model_name, origin, args, params)
# Cache the generated model *only* if not in the process of parametrizing
# another model. In some valid scenarios, we miss the opportunity to cache
# it but in some cases this results in `PydanticRecursiveRef` instances left
# on `FieldInfo` annotations:
if len(_generics.recursively_defined_type_refs()) == 1:
_generics.set_cached_generic_type(cls, typevar_values, submodel, origin, args)
return submodel
def __copy__(self) -> Self:
"""Returns a shallow copy of the model."""
cls = type(self)
m = cls.__new__(cls)
_object_setattr(m, '__dict__', copy(self.__dict__))
_object_setattr(m, '__pydantic_extra__', copy(self.__pydantic_extra__))
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
_object_setattr(m, '__pydantic_private__', None)
else:
_object_setattr(
m,
'__pydantic_private__',
{k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined},
)
return m
def __deepcopy__(self, memo: dict[int, Any] | None = None) -> Self:
"""Returns a deep copy of the model."""
cls = type(self)
m = cls.__new__(cls)
_object_setattr(m, '__dict__', deepcopy(self.__dict__, memo=memo))
_object_setattr(m, '__pydantic_extra__', deepcopy(self.__pydantic_extra__, memo=memo))
# This next line doesn't need a deepcopy because __pydantic_fields_set__ is a set[str],
# and attempting a deepcopy would be marginally slower.
_object_setattr(m, '__pydantic_fields_set__', copy(self.__pydantic_fields_set__))
if not hasattr(self, '__pydantic_private__') or self.__pydantic_private__ is None:
_object_setattr(m, '__pydantic_private__', None)
else:
_object_setattr(
m,
'__pydantic_private__',
deepcopy({k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}, memo=memo),
)
return m
if not TYPE_CHECKING:
# We put `__getattr__` in a non-TYPE_CHECKING block because otherwise, mypy allows arbitrary attribute access
# The same goes for __setattr__ and __delattr__, see: https://github.com/pydantic/pydantic/issues/8643
def __getattr__(self, item: str) -> Any:
private_attributes = object.__getattribute__(self, '__private_attributes__')
if item in private_attributes:
attribute = private_attributes[item]
if hasattr(attribute, '__get__'):
return attribute.__get__(self, type(self)) # type: ignore
try:
# Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
return self.__pydantic_private__[item] # type: ignore
except KeyError as exc:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
else:
# `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
# See `BaseModel.__repr_args__` for more details
try:
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
except AttributeError:
pydantic_extra = None
if pydantic_extra:
try:
return pydantic_extra[item]
except KeyError as exc:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}') from exc
else:
if hasattr(self.__class__, item):
return super().__getattribute__(item) # Raises AttributeError if appropriate
else:
# this is the current error
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
def __setattr__(self, name: str, value: Any) -> None:
if (setattr_handler := self.__pydantic_setattr_handlers__.get(name)) is not None:
setattr_handler(self, name, value)
# if None is returned from _setattr_handler, the attribute was set directly
elif (setattr_handler := self._setattr_handler(name, value)) is not None:
setattr_handler(self, name, value) # call here to not memo on possibly unknown fields
self.__pydantic_setattr_handlers__[name] = setattr_handler # memoize the handler for faster access
def _setattr_handler(self, name: str, value: Any) -> Callable[[BaseModel, str, Any], None] | None:
"""Get a handler for setting an attribute on the model instance.
Returns:
A handler for setting an attribute on the model instance. Used for memoization of the handler.
Memoizing the handlers leads to a dramatic performance improvement in `__setattr__`
Returns `None` when memoization is not safe, then the attribute is set directly.
"""
cls = self.__class__
if name in cls.__class_vars__:
raise AttributeError(
f'{name!r} is a ClassVar of `{cls.__name__}` and cannot be set on an instance. '
f'If you want to set a value on the class, use `{cls.__name__}.{name} = value`.'
)
elif not _fields.is_valid_field_name(name):
if (attribute := cls.__private_attributes__.get(name)) is not None:
if hasattr(attribute, '__set__'):
return lambda model, _name, val: attribute.__set__(model, val)
else:
return _SIMPLE_SETATTR_HANDLERS['private']
else:
_object_setattr(self, name, value)
return None # Can not return memoized handler with possibly freeform attr names
attr = getattr(cls, name, None)
# NOTE: We currently special case properties and `cached_property`, but we might need
# to generalize this to all data/non-data descriptors at some point. For non-data descriptors
# (such as `cached_property`), it isn't obvious though. `cached_property` caches the value
# to the instance's `__dict__`, but other non-data descriptors might do things differently.
if isinstance(attr, cached_property):
return _SIMPLE_SETATTR_HANDLERS['cached_property']
_check_frozen(cls, name, value)
# We allow properties to be set only on non frozen models for now (to match dataclasses).
# This can be changed if it ever gets requested.
if isinstance(attr, property):
return lambda model, _name, val: attr.__set__(model, val)
elif cls.model_config.get('validate_assignment'):
return _SIMPLE_SETATTR_HANDLERS['validate_assignment']
elif name not in cls.__pydantic_fields__:
if cls.model_config.get('extra') != 'allow':
# TODO - matching error
raise ValueError(f'"{cls.__name__}" object has no field "{name}"')
elif attr is None:
# attribute does not exist, so put it in extra
self.__pydantic_extra__[name] = value
return None # Can not return memoized handler with possibly freeform attr names
else:
# attribute _does_ exist, and was not in extra, so update it
return _SIMPLE_SETATTR_HANDLERS['extra_known']
else:
return _SIMPLE_SETATTR_HANDLERS['model_field']
def __delattr__(self, item: str) -> Any:
cls = self.__class__
if item in self.__private_attributes__:
attribute = self.__private_attributes__[item]
if hasattr(attribute, '__delete__'):
attribute.__delete__(self) # type: ignore
return
try:
# Note: self.__pydantic_private__ cannot be None if self.__private_attributes__ has items
del self.__pydantic_private__[item] # type: ignore
return
except KeyError as exc:
raise AttributeError(f'{cls.__name__!r} object has no attribute {item!r}') from exc
# Allow cached properties to be deleted (even if the class is frozen):
attr = getattr(cls, item, None)
if isinstance(attr, cached_property):
return object.__delattr__(self, item)
_check_frozen(cls, name=item, value=None)
if item in self.__pydantic_fields__:
object.__delattr__(self, item)
elif self.__pydantic_extra__ is not None and item in self.__pydantic_extra__:
del self.__pydantic_extra__[item]
else:
try:
object.__delattr__(self, item)
except AttributeError:
raise AttributeError(f'{type(self).__name__!r} object has no attribute {item!r}')
# Because we make use of `@dataclass_transform()`, `__replace__` is already synthesized by
# type checkers, so we define the implementation in this `if not TYPE_CHECKING:` block:
def __replace__(self, **changes: Any) -> Self:
return self.model_copy(update=changes)
def __getstate__(self) -> dict[Any, Any]:
private = self.__pydantic_private__
if private:
private = {k: v for k, v in private.items() if v is not PydanticUndefined}
return {
'__dict__': self.__dict__,
'__pydantic_extra__': self.__pydantic_extra__,
'__pydantic_fields_set__': self.__pydantic_fields_set__,
'__pydantic_private__': private,
}
def __setstate__(self, state: dict[Any, Any]) -> None:
_object_setattr(self, '__pydantic_fields_set__', state.get('__pydantic_fields_set__', {}))
_object_setattr(self, '__pydantic_extra__', state.get('__pydantic_extra__', {}))
_object_setattr(self, '__pydantic_private__', state.get('__pydantic_private__', {}))
_object_setattr(self, '__dict__', state.get('__dict__', {}))
if not TYPE_CHECKING:
def __eq__(self, other: Any) -> bool:
if isinstance(other, BaseModel):
# When comparing instances of generic types for equality, as long as all field values are equal,
# only require their generic origin types to be equal, rather than exact type equality.
# This prevents headaches like MyGeneric(x=1) != MyGeneric[Any](x=1).
self_type = self.__pydantic_generic_metadata__['origin'] or self.__class__
other_type = other.__pydantic_generic_metadata__['origin'] or other.__class__
# Perform common checks first
if not (
self_type == other_type
and getattr(self, '__pydantic_private__', None) == getattr(other, '__pydantic_private__', None)
and self.__pydantic_extra__ == other.__pydantic_extra__
):
return False
# We only want to compare pydantic fields but ignoring fields is costly.
# We'll perform a fast check first, and fallback only when needed
# See GH-7444 and GH-7825 for rationale and a performance benchmark
# First, do the fast (and sometimes faulty) __dict__ comparison
if self.__dict__ == other.__dict__:
# If the check above passes, then pydantic fields are equal, we can return early
return True
# We don't want to trigger unnecessary costly filtering of __dict__ on all unequal objects, so we return
# early if there are no keys to ignore (we would just return False later on anyway)
model_fields = type(self).__pydantic_fields__.keys()
if self.__dict__.keys() <= model_fields and other.__dict__.keys() <= model_fields:
return False
# If we reach here, there are non-pydantic-fields keys, mapped to unequal values, that we need to ignore
# Resort to costly filtering of the __dict__ objects
# We use operator.itemgetter because it is much faster than dict comprehensions
# NOTE: Contrary to standard python class and instances, when the Model class has a default value for an
# attribute and the model instance doesn't have a corresponding attribute, accessing the missing attribute
# raises an error in BaseModel.__getattr__ instead of returning the class attribute
# So we can use operator.itemgetter() instead of operator.attrgetter()
getter = operator.itemgetter(*model_fields) if model_fields else lambda _: _utils._SENTINEL
try:
return getter(self.__dict__) == getter(other.__dict__)
except KeyError:
# In rare cases (such as when using the deprecated BaseModel.copy() method),
# the __dict__ may not contain all model fields, which is how we can get here.
# getter(self.__dict__) is much faster than any 'safe' method that accounts
# for missing keys, and wrapping it in a `try` doesn't slow things down much
# in the common case.
self_fields_proxy = _utils.SafeGetItemProxy(self.__dict__)
other_fields_proxy = _utils.SafeGetItemProxy(other.__dict__)
return getter(self_fields_proxy) == getter(other_fields_proxy)
# other instance is not a BaseModel
else:
return NotImplemented # delegate to the other item in the comparison
if TYPE_CHECKING:
# We put `__init_subclass__` in a TYPE_CHECKING block because, even though we want the type-checking benefits
# described in the signature of `__init_subclass__` below, we don't want to modify the default behavior of
# subclass initialization.
def __init_subclass__(cls, **kwargs: Unpack[ConfigDict]):
"""This signature is included purely to help type-checkers check arguments to class declaration, which
provides a way to conveniently set model_config key/value pairs.
```python
from pydantic import BaseModel
class MyModel(BaseModel, extra='allow'): ...
```
However, this may be deceiving, since the _actual_ calls to `__init_subclass__` will not receive any
of the config arguments, and will only receive any keyword arguments passed during class initialization
that are _not_ expected keys in ConfigDict. (This is due to the way `ModelMetaclass.__new__` works.)
Args:
**kwargs: Keyword arguments passed to the class definition, which set model_config
Note:
You may want to override `__pydantic_init_subclass__` instead, which behaves similarly but is called
*after* the class is fully initialized.
"""
def __iter__(self) -> TupleGenerator:
"""So `dict(model)` works."""
yield from [(k, v) for (k, v) in self.__dict__.items() if not k.startswith('_')]
extra = self.__pydantic_extra__
if extra:
yield from extra.items()
def __repr__(self) -> str:
return f'{self.__repr_name__()}({self.__repr_str__(", ")})'
def __repr_args__(self) -> _repr.ReprArgs:
# Eagerly create the repr of computed fields, as this may trigger access of cached properties and as such
# modify the instance's `__dict__`. If we don't do it now, it could happen when iterating over the `__dict__`
# below if the instance happens to be referenced in a field, and would modify the `__dict__` size *during* iteration.
computed_fields_repr_args = [
(k, getattr(self, k)) for k, v in self.__pydantic_computed_fields__.items() if v.repr
]
for k, v in self.__dict__.items():
field = self.__pydantic_fields__.get(k)
if field and field.repr:
if v is not self:
yield k, v
else:
yield k, self.__repr_recursion__(v)
# `__pydantic_extra__` can fail to be set if the model is not yet fully initialized.
# This can happen if a `ValidationError` is raised during initialization and the instance's
# repr is generated as part of the exception handling. Therefore, we use `getattr` here
# with a fallback, even though the type hints indicate the attribute will always be present.
try:
pydantic_extra = object.__getattribute__(self, '__pydantic_extra__')
except AttributeError:
pydantic_extra = None
if pydantic_extra is not None:
yield from ((k, v) for k, v in pydantic_extra.items())
yield from computed_fields_repr_args
# take logic from `_repr.Representation` without the side effects of inheritance, see #5740
__repr_name__ = _repr.Representation.__repr_name__
__repr_recursion__ = _repr.Representation.__repr_recursion__
__repr_str__ = _repr.Representation.__repr_str__
__pretty__ = _repr.Representation.__pretty__
__rich_repr__ = _repr.Representation.__rich_repr__
def __str__(self) -> str:
return self.__repr_str__(' ')
# ##### Deprecated methods from v1 #####
@property
@typing_extensions.deprecated(
'The `__fields__` attribute is deprecated, use `model_fields` instead.', category=None
)
def __fields__(self) -> dict[str, FieldInfo]:
warnings.warn(
'The `__fields__` attribute is deprecated, use `model_fields` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return getattr(type(self), '__pydantic_fields__', {})
@property
@typing_extensions.deprecated(
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
category=None,
)
def __fields_set__(self) -> set[str]:
warnings.warn(
'The `__fields_set__` attribute is deprecated, use `model_fields_set` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return self.__pydantic_fields_set__
@typing_extensions.deprecated('The `dict` method is deprecated; use `model_dump` instead.', category=None)
def dict( # noqa: D102
self,
*,
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
) -> Dict[str, Any]: # noqa UP006
warnings.warn(
'The `dict` method is deprecated; use `model_dump` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return self.model_dump(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
@typing_extensions.deprecated('The `json` method is deprecated; use `model_dump_json` instead.', category=None)
def json( # noqa: D102
self,
*,
include: IncEx | None = None,
exclude: IncEx | None = None,
by_alias: bool = False,
exclude_unset: bool = False,
exclude_defaults: bool = False,
exclude_none: bool = False,
encoder: Callable[[Any], Any] | None = PydanticUndefined, # type: ignore[assignment]
models_as_dict: bool = PydanticUndefined, # type: ignore[assignment]
**dumps_kwargs: Any,
) -> str:
warnings.warn(
'The `json` method is deprecated; use `model_dump_json` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
if encoder is not PydanticUndefined:
raise TypeError('The `encoder` argument is no longer supported; use field serializers instead.')
if models_as_dict is not PydanticUndefined:
raise TypeError('The `models_as_dict` argument is no longer supported; use a model serializer instead.')
if dumps_kwargs:
raise TypeError('`dumps_kwargs` keyword arguments are no longer supported.')
return self.model_dump_json(
include=include,
exclude=exclude,
by_alias=by_alias,
exclude_unset=exclude_unset,
exclude_defaults=exclude_defaults,
exclude_none=exclude_none,
)
@classmethod
@typing_extensions.deprecated('The `parse_obj` method is deprecated; use `model_validate` instead.', category=None)
def parse_obj(cls, obj: Any) -> Self: # noqa: D102
warnings.warn(
'The `parse_obj` method is deprecated; use `model_validate` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated(
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
'otherwise load the data then use `model_validate` instead.',
category=None,
)
def parse_raw( # noqa: D102
cls,
b: str | bytes,
*,
content_type: str | None = None,
encoding: str = 'utf8',
proto: DeprecatedParseProtocol | None = None,
allow_pickle: bool = False,
) -> Self: # pragma: no cover
warnings.warn(
'The `parse_raw` method is deprecated; if your data is JSON use `model_validate_json`, '
'otherwise load the data then use `model_validate` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import parse
try:
obj = parse.load_str_bytes(
b,
proto=proto,
content_type=content_type,
encoding=encoding,
allow_pickle=allow_pickle,
)
except (ValueError, TypeError) as exc:
import json
# try to match V1
if isinstance(exc, UnicodeDecodeError):
type_str = 'value_error.unicodedecode'
elif isinstance(exc, json.JSONDecodeError):
type_str = 'value_error.jsondecode'
elif isinstance(exc, ValueError):
type_str = 'value_error'
else:
type_str = 'type_error'
# ctx is missing here, but since we've added `input` to the error, we're not pretending it's the same
error: pydantic_core.InitErrorDetails = {
# The type: ignore on the next line is to ignore the requirement of LiteralString
'type': pydantic_core.PydanticCustomError(type_str, str(exc)), # type: ignore
'loc': ('__root__',),
'input': b,
}
raise pydantic_core.ValidationError.from_exception_data(cls.__name__, [error])
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated(
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
'use `model_validate_json`, otherwise `model_validate` instead.',
category=None,
)
def parse_file( # noqa: D102
cls,
path: str | Path,
*,
content_type: str | None = None,
encoding: str = 'utf8',
proto: DeprecatedParseProtocol | None = None,
allow_pickle: bool = False,
) -> Self:
warnings.warn(
'The `parse_file` method is deprecated; load the data from file, then if your data is JSON '
'use `model_validate_json`, otherwise `model_validate` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import parse
obj = parse.load_file(
path,
proto=proto,
content_type=content_type,
encoding=encoding,
allow_pickle=allow_pickle,
)
return cls.parse_obj(obj)
@classmethod
@typing_extensions.deprecated(
'The `from_orm` method is deprecated; set '
"`model_config['from_attributes']=True` and use `model_validate` instead.",
category=None,
)
def from_orm(cls, obj: Any) -> Self: # noqa: D102
warnings.warn(
'The `from_orm` method is deprecated; set '
"`model_config['from_attributes']=True` and use `model_validate` instead.",
category=PydanticDeprecatedSince20,
stacklevel=2,
)
if not cls.model_config.get('from_attributes', None):
raise PydanticUserError(
'You must set the config attribute `from_attributes=True` to use from_orm', code=None
)
return cls.model_validate(obj)
@classmethod
@typing_extensions.deprecated('The `construct` method is deprecated; use `model_construct` instead.', category=None)
def construct(cls, _fields_set: set[str] | None = None, **values: Any) -> Self: # noqa: D102
warnings.warn(
'The `construct` method is deprecated; use `model_construct` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return cls.model_construct(_fields_set=_fields_set, **values)
@typing_extensions.deprecated(
'The `copy` method is deprecated; use `model_copy` instead. '
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
category=None,
)
def copy(
self,
*,
include: AbstractSetIntStr | MappingIntStrAny | None = None,
exclude: AbstractSetIntStr | MappingIntStrAny | None = None,
update: Dict[str, Any] | None = None, # noqa UP006
deep: bool = False,
) -> Self: # pragma: no cover
"""Returns a copy of the model.
!!! warning "Deprecated"
This method is now deprecated; use `model_copy` instead.
If you need `include` or `exclude`, use:
```python {test="skip" lint="skip"}
data = self.model_dump(include=include, exclude=exclude, round_trip=True)
data = {**data, **(update or {})}
copied = self.model_validate(data)
```
Args:
include: Optional set or mapping specifying which fields to include in the copied model.
exclude: Optional set or mapping specifying which fields to exclude in the copied model.
update: Optional dictionary of field-value pairs to override field values in the copied model.
deep: If True, the values of fields that are Pydantic models will be deep-copied.
Returns:
A copy of the model with included, excluded and updated fields as specified.
"""
warnings.warn(
'The `copy` method is deprecated; use `model_copy` instead. '
'See the docstring of `BaseModel.copy` for details about how to handle `include` and `exclude`.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import copy_internals
values = dict(
copy_internals._iter(
self, to_dict=False, by_alias=False, include=include, exclude=exclude, exclude_unset=False
),
**(update or {}),
)
if self.__pydantic_private__ is None:
private = None
else:
private = {k: v for k, v in self.__pydantic_private__.items() if v is not PydanticUndefined}
if self.__pydantic_extra__ is None:
extra: dict[str, Any] | None = None
else:
extra = self.__pydantic_extra__.copy()
for k in list(self.__pydantic_extra__):
if k not in values: # k was in the exclude
extra.pop(k)
for k in list(values):
if k in self.__pydantic_extra__: # k must have come from extra
extra[k] = values.pop(k)
# new `__pydantic_fields_set__` can have unset optional fields with a set value in `update` kwarg
if update:
fields_set = self.__pydantic_fields_set__ | update.keys()
else:
fields_set = set(self.__pydantic_fields_set__)
# removing excluded fields from `__pydantic_fields_set__`
if exclude:
fields_set -= set(exclude)
return copy_internals._copy_and_set_values(self, values, fields_set, extra, private, deep=deep)
@classmethod
@typing_extensions.deprecated('The `schema` method is deprecated; use `model_json_schema` instead.', category=None)
def schema( # noqa: D102
cls, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE
) -> Dict[str, Any]: # noqa UP006
warnings.warn(
'The `schema` method is deprecated; use `model_json_schema` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return cls.model_json_schema(by_alias=by_alias, ref_template=ref_template)
@classmethod
@typing_extensions.deprecated(
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
category=None,
)
def schema_json( # noqa: D102
cls, *, by_alias: bool = True, ref_template: str = DEFAULT_REF_TEMPLATE, **dumps_kwargs: Any
) -> str: # pragma: no cover
warnings.warn(
'The `schema_json` method is deprecated; use `model_json_schema` and json.dumps instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
import json
from .deprecated.json import pydantic_encoder
return json.dumps(
cls.model_json_schema(by_alias=by_alias, ref_template=ref_template),
default=pydantic_encoder,
**dumps_kwargs,
)
@classmethod
@typing_extensions.deprecated('The `validate` method is deprecated; use `model_validate` instead.', category=None)
def validate(cls, value: Any) -> Self: # noqa: D102
warnings.warn(
'The `validate` method is deprecated; use `model_validate` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
return cls.model_validate(value)
@classmethod
@typing_extensions.deprecated(
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
category=None,
)
def update_forward_refs(cls, **localns: Any) -> None: # noqa: D102
warnings.warn(
'The `update_forward_refs` method is deprecated; use `model_rebuild` instead.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
if localns: # pragma: no cover
raise TypeError('`localns` arguments are not longer accepted.')
cls.model_rebuild(force=True)
@typing_extensions.deprecated(
'The private method `_iter` will be removed and should no longer be used.', category=None
)
def _iter(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_iter` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import copy_internals
return copy_internals._iter(self, *args, **kwargs)
@typing_extensions.deprecated(
'The private method `_copy_and_set_values` will be removed and should no longer be used.',
category=None,
)
def _copy_and_set_values(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_copy_and_set_values` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import copy_internals
return copy_internals._copy_and_set_values(self, *args, **kwargs)
@classmethod
@typing_extensions.deprecated(
'The private method `_get_value` will be removed and should no longer be used.',
category=None,
)
def _get_value(cls, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_get_value` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import copy_internals
return copy_internals._get_value(cls, *args, **kwargs)
@typing_extensions.deprecated(
'The private method `_calculate_keys` will be removed and should no longer be used.',
category=None,
)
def _calculate_keys(self, *args: Any, **kwargs: Any) -> Any:
warnings.warn(
'The private method `_calculate_keys` will be removed and should no longer be used.',
category=PydanticDeprecatedSince20,
stacklevel=2,
)
from .deprecated import copy_internals
return copy_internals._calculate_keys(self, *args, **kwargs)
ModelT = TypeVar('ModelT', bound=BaseModel)
@overload
def create_model(
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: None = None,
__module__: str = __name__,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
**field_definitions: Any | tuple[str, Any],
) -> type[BaseModel]: ...
@overload
def create_model(
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: type[ModelT] | tuple[type[ModelT], ...],
__module__: str = __name__,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
**field_definitions: Any | tuple[str, Any],
) -> type[ModelT]: ...
def create_model( # noqa: C901
model_name: str,
/,
*,
__config__: ConfigDict | None = None,
__doc__: str | None = None,
__base__: type[ModelT] | tuple[type[ModelT], ...] | None = None,
__module__: str | None = None,
__validators__: dict[str, Callable[..., Any]] | None = None,
__cls_kwargs__: dict[str, Any] | None = None,
# TODO PEP 747: replace `Any` by the TypeForm:
**field_definitions: Any | tuple[str, Any],
) -> type[ModelT]:
"""!!! abstract "Usage Documentation"
[Dynamic Model Creation](../concepts/models.md#dynamic-model-creation)
Dynamically creates and returns a new Pydantic model, in other words, `create_model` dynamically creates a
subclass of [`BaseModel`][pydantic.BaseModel].
Args:
model_name: The name of the newly created model.
__config__: The configuration of the new model.
__doc__: The docstring of the new model.
__base__: The base class or classes for the new model.
__module__: The name of the module that the model belongs to;
if `None`, the value is taken from `sys._getframe(1)`
__validators__: A dictionary of methods that validate fields. The keys are the names of the validation methods to
be added to the model, and the values are the validation methods themselves. You can read more about functional
validators [here](https://docs.pydantic.dev/2.9/concepts/validators/#field-validators).
__cls_kwargs__: A dictionary of keyword arguments for class creation, such as `metaclass`.
**field_definitions: Field definitions of the new model. Either:
- a single element, representing the type annotation of the field.
- a two-tuple, the first element being the type and the second element the assigned value
(either a default or the [`Field()`][pydantic.Field] function).
Returns:
The new [model][pydantic.BaseModel].
Raises:
PydanticUserError: If `__base__` and `__config__` are both passed.
"""
if __base__ is not None:
if __config__ is not None:
raise PydanticUserError(
'to avoid confusion `__config__` and `__base__` cannot be used together',
code='create-model-config-base',
)
if not isinstance(__base__, tuple):
__base__ = (__base__,)
else:
__base__ = (cast('type[ModelT]', BaseModel),)
__cls_kwargs__ = __cls_kwargs__ or {}
fields: dict[str, Any] = {}
annotations: dict[str, Any] = {}
for f_name, f_def in field_definitions.items():
if isinstance(f_def, tuple):
if len(f_def) != 2:
raise PydanticUserError(
f'Field definition for {f_name!r} should a single element representing the type or a two-tuple, the first element '
'being the type and the second element the assigned value (either a default or the `Field()` function).',
code='create-model-field-definitions',
)
annotations[f_name] = f_def[0]
fields[f_name] = f_def[1]
else:
annotations[f_name] = f_def
if __module__ is None:
f = sys._getframe(1)
__module__ = f.f_globals['__name__']
namespace: dict[str, Any] = {'__annotations__': annotations, '__module__': __module__}
if __doc__:
namespace.update({'__doc__': __doc__})
if __validators__:
namespace.update(__validators__)
namespace.update(fields)
if __config__:
namespace['model_config'] = _config.ConfigWrapper(__config__).config_dict
resolved_bases = types.resolve_bases(__base__)
meta, ns, kwds = types.prepare_class(model_name, resolved_bases, kwds=__cls_kwargs__)
if resolved_bases is not __base__:
ns['__orig_bases__'] = __base__
namespace.update(ns)
return meta(
model_name,
resolved_bases,
namespace,
__pydantic_reset_parent_namespace__=False,
_create_model_module=__module__,
**kwds,
)
__getattr__ = getattr_migration(__name__)